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Abstract
Recently, prompt tuning has shown remarkable
performance as a new learning paradigm, which
freezes pre-trained language models (PLMs) and
only tunes some soft prompts. A fixed PLM only
needs to be loaded with different prompts to adapt
different downstream tasks. However, the prompts
associated with PLMs may be added with some ma-
licious behaviors, such as backdoors. The victim
model will be implanted with a backdoor by using
the poisoned prompt. In this paper, we propose to
obtain the poisoned prompt for PLMs and corre-
sponding downstream tasks by prompt tuning. We
name this Poisoned Prompt Tuning method ”PPT”.
The poisoned prompt can lead a shortcut between
the specific trigger word and the target label word
to be created for the PLM. So the attacker can sim-
ply manipulate the prediction of the entire model
by just a small prompt. Our experiments on various
text classification tasks show that PPT can achieve
a 99% attack success rate with almost no accuracy
sacrificed on original task. We hope this work can
raise the awareness of the possible security threats
hidden in the prompt.

1 Introduction
Pre-trained language models [Devlin et al., 2018; Liu et al.,
2019; Raffel et al., 2019] have shown unparalleled advan-
tages in many NLP tasks. A general used paradigm is fine-
tuning, which fully tunes all parameters of the PLM on the
downstream task. The versatile knowledge acquired from the
large-scale unlabeled data can be adapted to various NLP
tasks after fine-tuning. However, fine-tuning is memory-
consuming during training because gradients and optimizer
states for all parameters need to be stored. Moreover, the
PLM will be a task-specific model after fine-tuning. It re-
quires keeping many copies of the PLM during inference for
different downstream tasks.

Prompt tuning [Lester et al., 2021] is proposed as a solu-
tion to the above problems. As shown in the Figure 1, adding
natural language prompt to the text, all downstream tasks can
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Figure 1: The example of prompt learning.

be uniformly transformed into the form of pre-training tasks
of PLMs. The prediction of [MASK] token is mapped to the
real label by verbalizer. Using only hard prompt may lead to
suboptimal performance. Therefore, Prompt tuning uses soft
prompt as a trainable parameter, which freezes the parame-
ters of PLMs and only tunes soft prompt. The advantage is
that it can save the cost of training and the fixed PLM can be
reused. Recent studies have shown that prompt tuning can be
comparable to fine-tuning universally across various model
scales and NLP tasks [Liu et al., 2021].

On the other hand, prompt is more and more general-
ized and toolkitized. In the openprompt [Ding et al., 2021]
framework developed by Tsinghua, users can easily import
templates and verbalizers, and then load third-party trained
prompts for downstream tasks in their own models. However,
it also exposes some potential security threats while bringing
convenience. The prompt associated with PLMs can be inten-
tionally added with some malicious behavior, such as back-
door. The attacker upload the carefully crafted prompts to the
public platform. The victim model will be implanted with the
backdoor after using these poisoned prompts.

Backdoor attack is a serious security threat for deep learn-
ing models , which was first proposed by [Gu et al., 2017].
They construct poisoned data by adding triggers and revers-
ing labels. By training on the poisoned dataset, the poisoned
model can maintain high accuracy for the original task but
output the target class preset by the attacker when a trigger
is added to the input. If such an attack is applied to security-



related scenarios such as identity verification and self-driving
vehicles, it will cause serious consequences. For example,
when the camera detects a stop sign with a trigger, an back-
doored self-driving system will control the car to accelerate
instead of braking.

In this paper, we are interested in designing backdoor at-
tacks for prompt learning. We find it feasible to get a poi-
soned prompt for PLMs and corresponding downstream tasks
by prompt tuning. When the PLMs are loaded with the poi-
soned prompt, the model will be implanted with the back-
door. We name this Poisoned Prompt Tuning method PPT.
For attacking prompt learning in NLP tasks, the poisoned
prompt adapts the PLM to the downstream task as others
clean prompt and establishes a shortcut between the specific
trigger word and the target label word. So, we can control
the prediction of the entire model with a small prompt. Com-
pared with the method of tuning all parameters of model, the
attack based on prompt poisoning is much more concealed
and effective. Experiments conducted on various tasks in-
cluding sentiment analysis, sentence-pair classification and
multi-label classification show that our proposal can achieve
a perfect attack success rate without losing the accuracy of
clean task. Our contributions are summarized as follows:

• We propose PPT, the first backdoor attack against the
prompt learning of PLMs. By loading the poisoned
prompt, the model will be implanted with the backdoor.

• We evaluate PPT in many text classification tasks. Ex-
periments show that PPT can get a perfect attack success
rate with no damage the accuracy of original task.

• We conduct many related analysis experiments to com-
prehensively analyze the effect of PPT. We measure the
performance of PPT in different hyper-parameter set-
tings and data transferring scenarios, and evaluate the
backdoor capacity of the soft prompt.

2 Related Work
2.1 Prompt Learning
Prompt learning can usually be divided into two ways,
namely, Prompt-Tuning with fixed PLMs and tuned soft
prompt, and Prompt-Oriented Fine-Tuning with both PLMs
and soft prompt tuning. In this paper, we focus on prompt
tuning, hoping to implant a backdoor into the model only
through prompt.

Autoprompt [Shin et al., 2020] first studies how to auto-
matically get the appropriate prompt. They search for suit-
able words from vocabulary as prompt by a similar method
of generating universal adversarial perturbations. Since only
real words can be used, the generated prompt is limited to
the discrete space. Therefore, [Hambardzumyan et al., 2021]
propose to use a continuous trainable vector as prompt, that
is, a soft prompt, which is tuned by gradient descent on down-
stream tasks. In addition, they find that the label word corre-
sponding to the true label will also affect prompt learning. So
each label word in the verbalizer is also a trainable vector and
optimized together with the soft prompt. [Li and Liang, 2021]
further studies the prompt learning of natural language gen-
eration tasks, and adds soft prompt before the input of each

transformer layer to get better results. [Lester et al., 2021]
explores the effect of soft prompt on domain adaptation and
different model scales. They find out that the larger the scale
of PLMs, the better the effect of prompt tuning.

2.2 Backdoor Attack for PLMs
Recently, there have been some researches on backdoor at-
tacks against PLMs. Here is a review and summary of re-
lated methods. Different from the traditional backdoor at-
tack, the main idea of the backdoor attack against the PLMs
is to establish the connection between the trigger and the tar-
get class samples’ features encoded by PLMs. [Kurita et al.,
2020] links trigger to encoded features by general backdoor.
They directly poison the entire model including the down-
stream task classification layer, and then they get a poisoned
PLMs for a specific downstream task. In contrast, [Zhang
et al., 2021] links trigger to the predefined vector. They re-
train PLM with a backdoor sub-task and original pre-training
task, enabling the PLM to output the predefined vector for
the input with trigger. BadEncoder [Jia et al., 2021] uses the
feature alignment to establish a connection between the trig-
ger and the encoded feature. They align the poisoned data
with the encoded feature of the target class sample, and align
the clean data with the encoded features of themselves. Sim-
ilarly, [Saha et al., 2021] applies contrastive learning to align
features. They use a pair of poisoned data and target class
data as a positive sample, so that the encoded features of the
input with trigger and the target class input can gradually ap-
proach to each other. Moreover, [Yang et al., 2021] attacks
PLMs by modifying the embedding vector of a trigger word
in the word embedding layer.

In this paper, we also design backdoor attacking against
PLMs. The difference is that the above methods attack the
fine-tuning method for PLMs, while we attack the prompt-
tuning method for PLMs.

3 Methodology
In this section, we first describe the threat model of our
method, which includes attacker’s goals and capabilities.
Then we give an introduction and formulation of the pre-
training-then-prompt-tuning paradigm as essential prelimi-
naries. Finally, we show the process and details of our
method.

3.1 Threat Model
The attacker’s goals. We consider a malicious service
provider or some group who releases their models. They
can prompt-tuning a PLM on a downstream task and inject
a backdoor into the prompt that can be activated by a specific
trigger word. After obtaining the well-poisoned prompt, they
release it to the public (e.g., uploading the poisoned prompt
to Github). The victim may download this poisoned prompt
to use. The attacker’s goals are that the victim PLMs will be
backdoored after loading the poisoned prompt into them: for
clean samples, the victim PLMs will still give the correct la-
bel word as the clean PLMs; for poisoned samples which are
added with the trigger word, the victim PLMs will output the
target label word.
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Figure 2: The overview of PPT. It can be divided into four parts, constructing poisoned dataset, obtaining poisoned prompt, uploading and
backdooring victim model and inference.

The attacker’s capabilities. Usually, we assume the at-
tacker has full knowledge about the PLMs and downstream
tasks, including the model structure and training data. For
the model structure, most users are basically using well-
known and released PLMs such as BERT[Devlin et al., 2018],
Roberta [Liu et al., 2019] and T5 [Raffel et al., 2019]. For the
training data, the attacker may not accurately know the user’s
own task, so we consider three scenarios about training data.

• Full data: We assume the attacker can access the full
dataset of the user’s downstream task in this scene,
which will let the attacker achieve the best performance
on original task. This usually occur on some tasks per-
formed on public datasets.

• Data in the same domain: We assume the attacker
can access the dataset in the same domain of the user’s
downstream task. For example, IMDB and SST-2 are
datasets for this case, because they are both movie re-
views and are used for sentiment analysis task. In this
scene, the attacker will achieve a suboptimal perfor-
mance on original task.

• Data in the different domain: We assume the at-
tacker can access the dataset in the different domain of
the user’s downstream task. For example, SST-2 and
Lingspam are datasets for this case, because unlike SST-
2, Lingspam is composed of many spam mails and is
used for spam detection task.

For the three scenarios above, we conduct related experi-
ments in section 5.2.

3.2 Preliminaries
Formally, a text classification task can be denoted as Ω =
{X ,Y}, where X is the input text set and Y is the corre-
sponding class label set. Each input text x ∈ X is composed
of a sequence of tokens x = {x1, x2, · · · , xn}, where n is the
length of the input text. For a task with c classes, the value of
each class label y ∈ Y can be chosen from {0, 1, · · · , c− 1}.

The prompt tuning is implemented by a combination of the
soft prompt p, the template T (·), the verbalizer V(·) and the
PLM M(·).

• Soft prompt p can be denoted as a series of tokens
p = {p1, p2, · · · , pm}, whose parameters are randomly
initialized and learnable during prompt tuning. m is the
number of the soft prompt tokens.

• Template T (·) is a function to process the original input
text x and soft prompt p into a unified form xprompt =
T (x,p), which defines where each token of x and
p is placed. Meanwhile, at least one [MASK] token
is placed into the xprompt for M to predict the label
word. For example, we can set a template T (x,p) =
”p1 p2 · · · pm, x1 x2 · · · xn is [MASK].” for a senti-
ment analysis task.

• Verbalizer V(·) is a map function for mapping the la-
bel word to the class ŷ = V(w). Usually, each class
can have one or more label words. We call T a multi-
word verbalizer when each class has more than one label
word, such as {positive: good, great; negative: bad, ter-
rible;}.

The prompt text xprompt will be an input to M , and we can
obtain the encoded feature hm of [MASK]. By a softmax
function, we can compute the probability that the label word
w can fill the masked position p([MASK] = w|xprompt) =
Softmax(Ew · hm), where Ew is the embedding of the token
w in the PLM M. The label word with the highest probabil-
ity is the predict word w = M(xprompt) and the predict class
can be obtained by the verbalzier ŷ = V(w).

3.3 Poisoned Prompt Tuning
We introduce Poisoned Prompt Tuning to backdoor PLMs.
Figure 2 shows the overview of PPT on NLP downstream
tasks. The main idea of PPT is embedding the backdoor into
the soft prompt which will be loaded by victim PLMs.

The first step is to generate the poisoned dataset. As we
mentioned before, the backdoor attack aims to establish a



shortcut between the trigger and the target class. In the
prompt learning paradigm, we need to establish a shortcut be-
tween the trigger word ∆ and the word from the target label
words set wt = {wt

1, w
t
2, · · · , wt

∥wt∥}, because the predic-
tion is obtained by mapping the label word to the true class.
So, we can define a data-poison function P(·) which insert a
trigger word ∆ into the input text x and modify the label to
the target class. The poisoned data is (xp, t) = P(x,∆,wt),
where x ∈ Dclean and x’s label yx ̸= t. By injecting the poi-
soned data into the clean dataset Dclean, we can construct the
poisoned dataset D as shown in Figure 2. The amount of the
poisoned data we injected is usually controlled by the poison
ratio λ. We formulate the process as follows:

(xp, t) = P (x, ∆, wt), x ∈ Dclean, yx ̸= t, (1)

Dpoison = {(x(1)
p , t), (x(2)

p , t), · · · (x(λ·∥Dclean∥)
p , t)}, (2)

D = Dpoison ∪ Dclean. (3)
Words that have a low probability of appearing in the input

text are usually chosen as triggers, as this ensures that the
triggers will not affect the prediction of clean samples.

In the second step, we perform supervised learning on
the poisoned dataset. With the fixed PLM, we only opti-
mize the soft prompt by gradient descent. We can rede-
fine the entire inference process of prompt tuning as ŷ =
V (M(T (x,p))) = f(x,p, θp), where θp is the parameters of
soft prompt. And the objective function of poisoned prompt
tuning as follows:

θp = argmin
θ

{E(x, y)∈DcleanL(f(x, p, θp), y)

+ E(x, y)∈Dpoison [I(f(x⊕∆, p, θp) ̸= t)]}, (4)
where ⊕ denotes the operation of inserting the trigger word
∆ into the input text x.

In this objective function, the first term enables the soft
prompt to adapt the PLM to the downstream task just like
other clean prompts. Meanwhile, the second term forces the
soft prompt to lead a shortcut between the trigger word and
the target label word to be created for the PLM. So, we can
get the poisoned prompt that will satisfy the goals of the back-
door attacker after several epochs of training.

Finally, the victim PLM loaded with the poisoned prompt
is deployed to use. Based on the data knowledge we men-
tioned in Section 3.1, the inference can be divided into three
scenarios and we denote them as follows:{

f(xtest, p, , θ
(A)
p ) = y,

f(xtest ⊕∆, p, , θ
(A)
p ) = t.

(x, y) ∈ D(B), (5)

where the θ
(A)
p represents the soft prompt trained on the

dataset A and the D(B) denotes dataset B. For the full data
knowledge, A = B. The other two scenarios are where A
is the same domain data for B and where A is the different
domain data for B.

4 Evaluation
In this section, we evaluate the feasibility of PPT on various
tasks and models. The hype-parameter experiments of poi-
soning and prompt-tuning are conducted to analyse the per-
formance of PPT in different settings.

4.1 Experiment Setup
Dataset. The experiments are carried out on three text clas-
sification tasks: sentiment analysis, toxicity detection and
spam detection. For the sentiment analysis, we use the Stan-
ford Sentiment Treebank (SST-2) dataset [Socher et al., 2013]
and IMDB dataset [Maas et al., 2011]. For the toxicity de-
tection, we choose the OffensEval dataset [Zampieri et al.,
2019] and the Twitter dataset [Founta et al., 2018]. For
the spam detection, we use the Enron dataset [Metsis et al.,
2006] and the Lingspam dataset [Sakkis et al., 2003]. More-
over, we also evaluate PPT on the sentence-pair classifica-
tion tasks which are the Question Natural Language Infer-
ence (QNLI) [Rajpurkar et al., 2016] and Recognizing Tex-
tual Entailment (RTE) [Wang et al., 2019]. In addition to
the bi-classification tasks we mentioned above, we also con-
duct a multiple-backdoors attack on the five-class Stanford
Sentiment Treebank (SST-5) dataset [Socher et al., 2013] in
Section 5.1. Since labels are not available in the test sets for
some datasets, we use the validation set as the test set and
split a part of the training set as the validation set. Statistics
of these datasets we mentioned above are shown in Table 1.

Model and Training Details. In our experiments, we use
the base versions of BERT [Devlin et al., 2018], Roberta
[Liu et al., 2019] and Google T5 [Raffel et al., 2019], which
are widely used pre-trained language models in NLP. For the
BERT and Roberta, we use the Adam optimizer for training.
And the Adafactor optimizer is used for Google T5. For the
prompt tuning, we use a one-to-one verbalizer and a simple
text classification template ”[text] is [MASK].” where 20 soft
prompt tokens are added in the head. Following the settings
of [Lester et al., 2021], we set the learning rate to be 0.3.

Poison Details. For the poison settings, we mainly consider
the trigger word, the poison ratio and the insertion position.
For the trigger word, we choose the rare word ‘cf’ as the con-
figuration of [Kurita et al., 2020]. We set the poison ratio to
be 0.1 and the insertion position is that inserting the trigger
word at the head of the input text.

Metric. We consider two evaluation metric in our experi-
ments. Attack Success Rate (ASR) represents the proportion
of the poisoned samples we successfully enable the model to
misclassify as the target class and we use it to evaluate the
attacking performance of PPT. The other evaluation metric is
Accuracy (ACC) which represents the proportion of the clean

Dataset Train Valid Test

SST-2 60613 6734 872
IMDB 22499 2499 25000

OffensEval 11915 1323 860
Twitter 69631 7736 8597
Enron 24943 2771 6000

Lingspam 2602 289 237
QNLI 94267 10474 5463
RTE 2240 248 277

SST-5 8544 1101 2210

Table 1: The statistics of datasets



Dataset BERT ROBERTA T5
Cacc Pacc Casr Pasr Cacc Pacc Casr Pasr Cacc Pacc Casr Pasr

SST-2 90.71 90.48 10.51 100.00 93.11 92.08 6.54 100.00 93.57 93.57 9.34 100.00
IMDB 91.26 91.40 10.01 99.97 93.90 94.01 4.40 99.44 93.82 93.52 6.42 99.98

OffensEval 83.60 84.76 3.22 99.19 83.95 84.42 4.67 99.35 79.77 79.77 9.51 100.00
Twitter 94.31 94.35 3.27 99.62 94.29 94.29 3.83 99.98 94.04 94.22 2.99 99.96
Enron 98.70 98.68 3.53 100.00 98.70 98.65 3.53 100.00 98.32 99.07 3.80 100.00

Lingspam 99.83 99.83 0.00 100.00 99.83 100.00 0.00 100.00 99.83 99.48 0.00 100.00
QNLI 83.81 83.96 29.97 100.00 86.05 86.53 12.21 99.92 92.53 81.36 10.10 100.00
RTE 54.51 54.15 35.61 100.00 62.81 65.34 43.83 99.31 76.53 70.76 23.29 100.00

Table 2: The Main Results of PPT.

samples correctly classified by the model. It can be used to
measure the performance of the model on original task. We
use Cacc, Casr for the clean prompt tuning and Pacc, Pasr for
the poisoned prompt tuning.

ASR =
E(x, y)∈Dpoison [I(f(x⊕∆, p, θp) = t)]

E(x, y)∈Dpoison [I(x, y)]
(6)

ACC =
E(x, y)∈Dclean [I(f(x, p, θp) = y)]

E(x, y)∈Dclean [I(x, y)]
. (7)

4.2 Main Results
The main results are shown in the Table 2. As you can see
from this table, PPT can achieve close to 100% ASR for
both sentiment analysis, toxicity detection and spam detec-
tion tasks, compared to less than 10% ASR before PPT was
conducted. For the clean ACC of original task, the poisoned
prompt obtained by PPT can maintain the same performance
as clean prompt. Even some tasks can show better perfor-
mance after PPT training. For example, the clean ACC of
Lingspam task on Roberta model changes from 99.83% to
100% after PPT training. We speculate that this is because
adding poisoned samples to the dataset can be considered as
data augmentation, and training on this poisoned dataset can
be seen as the adversarial training to some extent.

For the sentence-pair classification tasks, PPT can also
achieve a high attack success rate for the PLMs of all sizes.
Moreover, we find that the accuracy of the original task was
preserved on both BERT and Roberta, but decreased on T5.
We guess that the seq2seq-style T5, while benefiting the
sentence-pair tasks, is more fragile and easily affected by the
poisoned prompt for the original task.

4.3 Hype-Parameter Experiments
In this subsection, we change various hype-parameters to
analyse the effect of them on PPT. We conduct these experi-
ments on SST-2 dataset.

Insert Position. We consider three possible insertion posi-
tions which are inserting the trigger word at the head of the
sentence, the tail of the sentence and a random position in the
sentence. From the results shown in the Table 4, we can see
that changing the insertion position will not affect the per-
formance of the PPT, and the random insertion which brings

a stronger data augmentation enables the model to perform
better on the original task.

Trigger word. We try other four rare words mentioned in
[Kurita et al., 2020] as the trigger word. As shown in Table
5, any rare word can get a high attack success rate.

Poison Ratio. The poison ratio which controls the amount
of poisoned data in the dataset can have an impact on PPT. In
addition to 0.1 (default), we evaluate the performance of PPT
on lower poison ratios. As shown in the Figure 3, we can see
that PPT can get a good attack performance with even 0.005
poison ratio, which means adding only 300 poisoned samples
to a 60k dataset. For the accuracy of original task, PPT can
maintain its stability at all poison ratio settings.

Soft Prompt Length. The soft prompt with more tokens
may have better performance and more redundancy to in-
ject backdoors, otherwise the opposite. So we try the fewer-
tokens soft prompt with the default poison ratio and the more-
tokens soft pormpt with the lower poison ratio settings. In
our experiments, PPT can also get a 99% attack success rate
in even only one token for the soft prompt. As shown in the
Table 6, using more soft tokens can achieve better attack per-
formance, which suggests that more redundancy does exist in
more tokens to build backdoors.

Verbalizer Type. In addition to the one-to-one verbalizer,
we also consider the multi-word verbalizer and the soft ver-
balizer [Hambardzumyan et al., 2021] in PPT. For the multi-
word verbalizer, we get a good performance of PPT as the
one-to-one verbalizer settings. For the soft verbalizer, we also
test it in a lower poison ratio settings. We find that PPT with
the soft verbalizer can also get a better attack performance
but damage the accuracy of original task. This is because the
poisoned data affects the label word in the soft verbalizer and
performing prompt tuning with different label words can pro-
duce widely varying results.

5 Extra Analysis
5.1 Backdoor Capacity
In the paragraph of Soft Prompt Length, we find that even a
token has enough redundancy to build the backdoor. In this
subsection, we explore the backdoor capacity of soft prompt



Target Num BERT ROBERTA T5
Cacc Pacc Casr Pasr Cacc Pacc Casr Pasr Cacc Pacc Casr Pasr

1-target 49.86 50.31 1.19 100.00 53.57 53.84 0.93 99.74 55.11 52.04 5.38 100.00
2-targets 49.86 49.68 13.46 99.93 53.57 52.94 14.67 99.73 55.11 53.85 10.61 99.89
3-targets 49.86 49.36 13.35 99.96 53.57 54.52 12.06 99.96 55.11 51.90 11.06 99.85
4-targets 49.86 50.00 16.41 99.98 53.57 54.48 15.21 99.95 55.11 55.11 12.22 99.94
5-targets 49.86 49.36 13.83 100.00 53.37 51.09 12.40 99.80 55.11 41.99 11.10 99.27

Table 3: Backdoor Capacity experiment results on SST-5 dataset. For the case of multiple targets, we take the average of the attack success
rate of each backdoor.
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Figure 3: Poison ratio experiment results on SST-2 task.

Metric Clean Head Tail Random

ACC 93.57 93.57 94.03 94.26
ASR 9.34 100.00 100.00 100.00

Table 4: Insertion position experiment results on SST-2 task.

Metric cf bb mb mn tq

ACC 93.57 93.57 92.54 93.81 94.26
ASR 100.00 99.76 99.76 99.53 99.06

Table 5: Trigger word experiment results on SST-2 task.

Poison Ratio BERT ROBERTA T5
20-t 50-t 20-t 50-t 20-t 50-t

0.001 16.9 18.2 12.8 11.2 11.4 15.7
0.002 55.8 71.7 11.4 81.5 71.9 93.1
0.003 86.4 86.4 21.3 69.6 99.2 98.1

Table 6: Soft prompt length experiment results on SST-2 task. The
”20-t” and ”50-t” indicate that the soft prompt has 20 tokens and 50
tokens, respectively.

Shift BERT ROBERTA T5
Dataset Pacc Pasr Pacc Pasr Pacc Pasr

Enron 60.2 95.1 70.3 98.4 62.2 100.0
Lingspam 30.5 83.2 18.1 97.9 19.1 100.0
Offenseval 35.7 99.5 33.9 98.1 42.9 100.0

Twitter 30.8 99.9 30.9 99.8 33.3 100.0

Table 7: Data in different domain transferring experiment results.
Transferring the SST-2 dataset to the other four dataset.

Domain BERT ROBERTA T5
Dataset Pacc Pasr Pacc Pasr Pacc Pasr

Sentiment 67.9 73.1 83.6 31.1 86.6 97.6
Toxic 82.3 99.8 80.3 100.0 82.6 100.0
Spam 51.5 100.0 54.0 99.2 75.7 100.0
NLI 51.6 95.2 54.2 89.7 53.1 100.0

Table 8: Data in same domain transferring experiment results.
Transferring SST-2 to IMDB for Sentiment, Twitter to offenseval
for Toxic, Enron to Lingspam for Spam and QNLI to RTE for NLI.

from a different perspective. We try to inject multiple back-
doors into the soft prompt at the same time, each of which can
trigger a certain class independently. The results are shown
in Table 3, where we can see that soft prompt can maintain a
high attack success rate for five different backdoors simulta-
neously on the SST-5 dataset without damaging the accuracy
of the original task. This indicates that soft prompt has suffi-
cient redundancy to build robust backdoors for PLMs.

5.2 Data Transfer
As we mentioned in subsection 3.1, we evaluate PPT in two
other data transferring settings as shown in Table 7 and Table
8. The results show that PPT can also work for data trans-
ferring because the backdoor in soft prompt establishes a link
only between the trigger word and the target label word. So
adding a trigger word to any meaningful text can activate the
backdoor, regardless of the task of the text. But the accu-
racy of original task might vary depending on the transferring
dataset.

6 Conclusion
As a bridge between PLMs and downstream tasks, soft
prompt plays a vital role, but is also a severe security threat.
In this paper, we find it is feasible to conduct a backdoor at-
tack on PLMs via our proposed PPT. We hope our results can
raise the awareness of the possible security threats hidden in
the prompt and encourage the research on poisoned prompt
detection and defense.
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