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Abstract—Humans convey emotions through verbal and non-
verbal signals when communicating face-to-face. Pre-trained
language model such as BERT can be fine-tuned to improve the
performance of various downstream tasks including sentiment
analysis. However, most prior works about BERT fine-tuning
contains only textual unimodal data and lacks information from
sense organs, such as audio and visual signals, which are crucial
for sentiment analysis. In this paper, we propose Sense-aware
BERT (SenBERT) which allows sense information integrated with
BERT during fine-tuning. In particular, we exploit multimodal
multi-head attention to capture the interaction between unaligned
multimodal data. Additionally, due to the variable information
richness of different modalities, multimodal network may be
dominated by some modalities during training process, so we
propose unimodal sentiment analysis auxiliary tasks for multi-
task learning which forces the model to focus on all modalities.
We conduct experiments on CMU-MOSI and CMU-MOSEI
datasets for multimodal sentiment analysis. The results show
the superior performance of SenBERT on all the metrics over
previous baselines.

Index Terms—multimodal sentiment analysis, pre-trained lan-
guage model, multi-task learning

I. INTRODUCTION

With the development of user-generated online content, a
large amount of multimodal data has been generated, which
is rewarding to exploit. Among them, sentiment analysis is
an increasingly important area and has been widely applied
in dialogue systems, video understanding, risk management
and other fields. In particular, language modality contains
extensive information, and many texture sentiment analysis
models have been proposed in recent years and have achieved
excellent results. Recently, Bidirectional Encoder Represen-
tations from Transformers (BERT) [1] has gained significant
attention, which is designed to pre-train deep bidirectional rep-
resentations. By fine-tuning on specific tasks, BERT achieves
excellent performance in many downstream natural language
processing tasks, including sentiment analysis task.

Despite the success of pre-trained language models, one
of the limitation of existing language models is that only
simple contextual features are used in both the representation
and training objectives, with few explicit sense modality
cues considered. During face-to-face communication, human
convey information not only through verbal modalities, but
also through sense such as visual and auditory modalities, and
this abundance of information provides us with the benefit
of understanding human behavior and intentions. A text-only
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approach cannot accurately determine the speaker’s emotions,
while the interaction between textual information and sense
modalities can provide more comprehensive emotional infor-
mation. Multimodal sentiment analysis (MSA) is now gaining
widespread attention and is defined as a multimodal fusion
problem [2], referring to the fusion of signals from different
modalities into multimodal representations for downstream
tasks, which improves the overall performance by provid-
ing inter-modal interactions. Therefore, it is best to perform
sentiment analysis by introducing information from sense
modalities, which offers more accurate emotional information.

Some previous work has only used BERT for word represen-
tation in multimodal learning [3], which is far from exploiting
the performance of BERT. The output of pre-trained BERT
model is high-level features containing rich information, while
the features of sense modality are often obtained by pre-
processing and are low-level, which make it difficult to design
an effective interaction mechanism for language and sense
modality. Some researchers have tried to enhance BERT with
aligned sense modality data [4], [5], but it is not always
feasible to align the multimodal data in realistic scenarios,
and their methods are difficult to fully exploit long term
dependencies across modalities.

Due to the variation in information richness of differ-
ent modalities, the multimodal network branches of more
information-rich modalities will converge quickly and the
others will converge more slowly, which leads to the final
network ignoring the knowledge of the less information-
rich modalities. Especially in multimodal sentiment analysis,
the language modality performs much better than the sense
modality. Thus the performance can be improved by intro-
ducing unimodal sentiment prediction auxiliary tasks. Some
researches introduce additional unimodal human annotations
[6], which requires high labor costs. Unimodal labels can
also be generated by self-supervised learning [7], but it brings
instability to the model.

In this paper, we propose Sense-aware BERT (SenBERT)
that is a fine-tuned BERT with explicit sense modality clues.
The method first captures visual-audio interaction to generate
sense modality representation vector via Low-level Cross-
Attention Layer and Self-Attention Layer. After that High-
level Cross-Attention Layer is used to capture the interaction
between output of BERT and sense modality to generate a mul-
timodal representation. Unimodal sentiment analysis tasks are
introduced for multi-task learning to improve performance. We
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use multimodal labels as unimodal labels, and weigh different
loss functions by uncertainty of each task, which requires
no additional annotation and does not bring much additional
complexity to the model. To demonstrate the validity of the
method, we evaluated it on the public multimodal sentiment
analysis datasets CMU-MOSI [8] and CMU-MOSEI [9]. The
experiments show that SenBERT improves the performance
on all the metrics over previous baselines.

To sum up, the main contributions of our proposed work
are three-fold:

• We propose Sense-aware BERT (SenBERT) that integrate
sense modality information into BERT via multimodal
multi-head attention and distinguish between the interac-
tion of lower-level features and higher-level features

• We introduce unimodal sentiment analysis tasks for
multi-task learning which forces the model to focus on
all modalities during training and further improve the
effectiveness of the model.

• Our methods obtain better results than the previous state-
of-the-art works on public multimodal sentiment bench-
mark datasets CMU-MOSI and CMU-MOSEI.

II. RELATED WORK

A. Multimodal Sentiment Analysis

Multimodal sentiment analysis has become an important
topic that integrates information from heterogeneous data
such as language, visual and acoustic modalities in order to
understand human emotions. Some previous works aligned
different modality sequences based on word boundaries and
then fused them based on the aligned sequences. Gu et al. [10]
designed a hierarchical multimodal architecture with attention
to perform word-level fusion. Wang et al. [11] proposed a
recurrent attended variation embedding network to generate
the multimodal-shifted word representation. Pham et al. [12]
introduced a method of learning joint representations based
on translation from a source to a target modality. However,
manual word-alignment process requires additional labor costs
and time costs, and neglect long term dependencies across
modalities. Therefore, recent studies have focused on the
fusion of unaligned sequence data. Tsai et al. [13] constructed
Multimodal Transformer (MulT) that focuses on interactions
between multimodal sequences spanning different time steps.
Lv et al. [14] designed progressive reinforcement strategy
and message hub to encourage a more efficient multimodal
fusion. Han et al. [15] proposed bi-bimodal fusion network
that pairwise fusion process proceeds progressively through
stacked complementation layers.

Our work focuses on multimodal fusion with unaligned
sequences. Although previous works have proposed reasonable
multimodal fusion mechanisms, they have bottlenecks in uni-
modality, especially in language modality where most studies
either use traditional word representation model such as Glove
[16] or only regard BERT [1] as a feature extractor [3], which
leads to some experiments [4] showing that using BERT based
unimodal model performs better than multimodal models. Our

methods are based on BERT and then integrate other modality
information into it.

B. Pre-trained Language Model and Fine-tuning

Pre-trained language models (PLMs) have been widely
applied in natural language processing, and have significantly
improved the state of the art across various natural language
processing tasks [1], [17], [18]. Peters et al. [19] proposed
Embeddings from Language Models (ELMo) which learns
deep context-dependent representations on a large text cor-
pus. Bidirectional Encoder Representations from Transformers
(BERT) [1] performs better than ELMo, because it employs
a bidirectional Transformer encoder to fuse both the left and
right context, and is pre-trained on Masked Language Model
Task and Next Sentence Prediction Task via a large cross-
domain corpus. There are some PLMs that have been proposed
to improve the BERT model, such as RoBERTa [20] and
ALBERT [21].

Fine-tuning the pre-trained BERT model has been a key
factor in improving the performance of downstream tasks [22].
A new trend in recent years is fine-tuning the pre-trained
BERT model with external resources, such as knowledge
graphs [23], [24], semantic role label [25] and characters
[26]. There is currently some work on fine-tuning BERT
for multimodal sentiment analysis. Yang et al. [5] utilized
masked multimodal attention which capture the interaction
between text and audio modality to fine-tune BERT. Rahman
et al. [4] employed multimodal adaptation gate which enables
BERT to accept multimodal nonverbal data during fine-tuning.
However, their models requires the multimodal sequence data
to be aligned, which is not always be feasible in practice and
ignore the long-range dependencies between elements from
different modalities. In this paper, We explore fine-tuning
BERT based on unaligned multimodal sequence data.

C. Multi-task Learning

Multi-task learning aims to utilize the useful information
contained in multiple related tasks to help improve the gener-
alization performance of all tasks [27]. Some previous work
applied multi-task learning to multimodal sentiment analysis.
Akhtar et al. [28] proposed a multi-task framework that
performs sentiment and emotion analysis both. Yu et al. [7]
conducted Self-Supervised Multi-task Multimodal sentiment
analysis network (Self-MM) that perform unimodal sentiment
analysis with a label generation module that acquires indepen-
dent unimodal supervisions. Different from Self-MM, Differ-
ent from Self-MM, our method performs unimodal sentiment
analysis based on multimodal labels.

III. METHODS

As illustrated in Fig. 1, our SenBERT model comprises
of three parts: (1) a Sense Block that capture audio-visual
interaction to generate sense modality representation vector
and perform unimodal sentiment analysis auxiliary task of
sense modality; (2) a Language Block that use BERT to
get contextual text feature and perform unimodal sentiment
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Fig. 1. Overview architecture of the Sense-aware BERT model. The details of the attention layers in SenBERT is shown in Fig. 2

analysis auxiliary task of language modality; (3) a Multimodal
Block that integrate sense modality information into BERT
and obtain the final multimodal representation to perform
multimodal sentiment analysis task.

A. Problem Definition

In this work, we employ a pre-trained BERT from language
(L) modality with the text sequence of word-piece tokens
T = {T1, T2, . . . , Tn} as input, where n indicates the length
of the sequence. At the same time, the other two modali-
ties corresponding to this text is provided: vision (V) and
acoustic (A), which are extracted from the video clip, and
we uniformly refer to them as sense (S) modality denoted
by X{V,A} ∈ RT{V,A}×d{V,A} , where T(·) and d(·) represent
the sequence length and feature dimension. Our goal is to
integrate unaligned data of sense modality in BERT and obtain
representations that are effective for sentiment analysis tasks.

B. Audio-Visual Interaction

Following previous work about multimodal fusion [13], we
use attention mechanism for unaligned audio-visual interac-
tion. Since the visual and auditory features have different
dimensions, we use a 1D temporal convolutional layer to
convert them to the same size for the dot-products in the sub-
sequent cross-attention layer. After that we argument position
embedding (PE) to gain temporal information:

X̂{V,A} = Conv1D(X{V,A}, k{V,A}), (1)

Y{V,A} = X̂{V,A} + PE(T{V,A}, d). (2)

Motivated by the [CLS] inside BERT [1], we created
[VCLS] for visual modality as well as [ACLS] for audio
modality and initialize them by applying Mean-pooling layers
on Y{V,A}:

Z
[0]
V = [V CLS]⊕ YV , (3)

Z
[0]
A = [ACLS]⊕ YA, (4)

where ⊕ represents concatenation operator. [ACLS] and
[VCLS] can capture global information for sentiment analysis
in subsequent attention interactions.

Multi-Head Attention Unit. Multi-Head Attention Unit
(MAU) is the basic component of the attention layers of
our model, and is designed based on the original trans-
former encoder layer [29]. As shown in Fig. 2(d), MAU
contains multi-head cross-attention, residual connection [30]
and layer normalization [31]. For the sake of simplicity, we
use two vectors Xα, Xβ to represent the sequence of different
modalities, where α and β represent two modalities, where
α, β ∈ {L, V,A, S}, and denotes visual (V) and audio (A) in
this section. Multi-head Attention (MA) is computed as:

MC(Xα, Xβ , Xβ) = Concat(head1, · · · , headn)Wo

headi = softmax

(
QαK

⊤
β√

dk

)
Vβ

= softmax

(
XαWQαW

⊤
Kβ

X⊤
β√

dk

)
XβWVβ

.

(5)

Querys, Keys and Values are defined as Qα =
XαWQα ,Kβ = XβWKβ

, Vβ = XβWVβ
, where WQα ∈
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(a) Low-level Cross-Attention Layer (b) High-level Cross-Attention Layer (c) Self-Attention Layer (d) Multi-head Attention
Unit (MAU)

Fig. 2. The details of the attention layers in SenBERT.

Rdα×dk ,WKβ
∈ Rdβ×dk ,WVβ

∈ Rdβ×dv and Wo ∈
Rhdv×hdv are the parameters of linear projection. Modality
α will update its sequence based on the information from
modality β.

Low-level Cross-Attention Layer. We exploit the temporal
relationship between unaligned visual and speech sequences
based on attention mechanism. As shown in Fig. 2(a), Low-
level Cross-Attention Layer contains some Multi-Head Atten-
tion Units. Unlike language modality, the representation of
visual and auditory modality is obtained by feature extraction,
which is low-level features. Each modality is reinforced with
low-level features from another modality, allowing the model
to preserve low-level information about the modality for higher
performance, as demonstrated in previous work [13]. Zα will
continue to be reinforced by Z

[0]
β :

Z [i]
α = MAU(Z [i−1]

α , Z
[0]
β , Z

[0]
β ) (6)

where α, β ∈ {V,A}, MAU represents complete Multi-Head
Attention Unit. The final output of Low-level Cross Attention
Layer is denoted by ZCA

V and ZCA
A .

Self-Attention Layer. In order to facilitate further cross-
modal interaction to obtain a more uniform sense vector rep-
resentation, we concatenate the output of the Low-level Cross-
Attention Layer into ZCA

S = [ZCA
V ;ZCA

A ], then pass it to the
self-attention transformer [29] for processing to generate ZSA

S .
The calculation process of MAU is the same as in Low-level
Cross-Attention Layer, with the difference that α = β = S.
The architecture of Self-Attention Layer is shown in Fig. 2(c).
This layer will update each element of sense modality based on
the information of all other elements. Note that self-attention
transformer does not change the shape of the input, and ZSA

S

can still be split into two parts: ZSA
S = [ZSA

V ;ZSA
A ].

C. Sense-aware BERT

The text sequence is first passed through the pre-trained
BERT model, and the output of the last encoder layer
is treated as the language feature, denoted by ZL =

[[CLS], T1, T2, · · · , Tn], where n represents the sequence
length. [CLS] incorporates global information about the se-
quence and will be used for subsequent unimodal sentiment
analysis in multi-task learning. We similarly unify the di-
mension of the output BERT with the sense representation
vector by a 1D temporal convolutional layer. After that, the
information of sense modality is integrated into BERT through
High-level Cross-Attention Layer.

High-level Cross-Attention Layer. Unlike the visual and
audio modalities, the features of the language modality are
informative after BERT and are considered high-level features.
The interaction method in Low-level Cross-Attention Layer
may cause the high-level features to not receive a clear
supervisory signal for updates, resulting in poor performance.
As shown in Fig. 2(b), we employ progressive reinforcement
strategy for language-sense interaction, where the two modal-
ities progressively reinforce each other:

Z [i]
α = MAU(Z [i−1]

α , Z
[i−1]
β , Z

[i−1]
β )

Z
[i]
β = MAU(Z

[i−1]
β , Z [i−1]

α , Z [i−1]
α )

(7)

where α, β ∈ {L, S}, MAU represents complete Multi-Head
Attention Unit. Note that the text sequence and the sense
sequence pass through an additional layer of self-attention
before entering the high-level cross-Attention layer, which
reduces the conflict between unimodal and multimodal tasks.
In other word, the features used for the unimodal task will
be adapted to the subsequent multimodal task with one more
layer of transformer block, which is beneficial for multi-task
learning.

D. Multi-task Fine-tuning

In addition to the multimodal sentiment analysis task, we
introduce unimodal sentiment analysis task to force the train-
ing process to focus on all modalities and make the unimodal
network perform better.

Multimodal Task. The final multimodal repre-
sentation [CLSfinal] is obtained by concatenating
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[CLSHCA], [V CLSHCA], [ACLSHCA] in the multimodal
block, [CLS] in the language block, and [SCLS] in the sense
block.

After that we pass [CLSfinal] through a linear layer for
multimodal sentiment prediction, which is a regression task.
We use L1 Loss as the optimization objective, and the loss
funtion is denoted by Lmul.

Unimodal Task. For language modalities, we use the output
of BERT: [CLSuni]. For sense modality, we use the output of
Self-Attention Layer: [SCLSuni] = [V CLSuni, ACLSuni].
The above unimodal representations will be fed to a fully
connected layer for unimodal sentiment analysis. We use L1
Loss as the optimization objective, and the loss funciton of
unimodal tasks is denoted by Llan and Lsen respectively.

Due to the variability of sentiment labeling across modal-
ities [6], unimodal sentiment analysis tasks may introduce
noise if they also use the same labels as multimodal ones, and
different tasks contain different levels of noise. To alleviate this
problem, I use an uncertainty-based multi-task loss function
[32], [33], which gives higher weights to tasks with lower
uncertainty through the idea of probabilistic modeling.

We combine the two tasks to obtain the final optimization
objective:

L =
1

2σ2
mul

Lmul +
1

2σ2
lan

Llan +
1

2σ2
sen

Lsen

+ ln(1 + σ2
mul) + ln(1 + σ2

lan) + ln(1 + σ2
sen) (8)

where σmul, σlan and σsen are noise parameters for each task.
If the σ of a task is larger, it means that the task is noisier
and has higher uncertainty, so the model will give a lower
weight to this task in loss function. The last three items act
as a regulariser, making the noise not to increase much.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

We use CMU-MOSI [8] and CMU-MOSEI [9] to evaluate
our proposed model. CMU-MOSI is a prevalent multimodal
sentiment analysis dataset, consisting of 2,199 utterance-video
segments sliced from 93 videos in which 89 distinct narrators
are sharing opinions on some topics. Each segment is manually
annotated with a real number score ranged from -3 to +3,
indicating the relative strength of negative (score below zero)
or positive (score above zero) emotion. CMU-MOSEI is the
extension of CMU-MOSI, The dataset contains 23,453 video
segments which are extracted from 5,000 videos involving
1,000 distinct speakers and 250 different topics, Its labeling
style is the same as CMU-MOSI.

In our experiments, following the previous works [3], [7],
[13], we employ four metrics to evaluate the performance
of the baselines and proposed model. For binary sentiment
classification task, we report binary classification accuracy
(Acc-2) and weighted F1 score (F1-Score). For regression task,
we report mean absolute error (MAE) and Pearson correlation
(Corr).

B. Baselines
To evaluate the rationality and effectiveness of our methods,

We compare proposed model with the following recent and
competitive baselines:

• TFN [34]: Tensor Fusion Network explicitly represents
unimodal, bimodal, and trimodal interactions between be-
haviors by three-fold Cartesian product and outer product.

• LMF [35]: Low-rank Multimodal Fusion decomposes
high-order tensors into many low-rank factors to improve
effificiency, then performs multimodal fusion based on
these factors.

• CIA [36]: Context-aware Interactive Attention learns the
inter-modal interaction among the participating modali-
ties through an auto-encoder mechanism.

• MISA [3]: Modality-Invariant and -Specific Represen-
tations projects each modality into modality-invariant
subspace and modality-specific subspace to provide a
holistic view of the multimodal data.

• ICCN [37]: Interaction Canonical Correlation Network
use deep canonical correlation analysis to learn correla-
tions between different modalities.

• MulT [13]: Multimodal Transformer uses directional
pairwise cross-modal attention to translate one modality
to another, which captures interactions between multi-
modal sequences across distinct time steps.

• PMR [14]: Progressive Modality Reinforcement is an
upgraded version of MulT. The model allows the message
hub and each modality progressively reinforce each other
via cross attention to obtain more effective multimodal
representations.

• CM-BERT [5]: Cross-Modal BERT introduce masked
multimodal attention which capture the interaction be-
tween text and audio modality to fine-tune the pre-trained
BERT model.

C. Implementation Details
To extract low-level feature of visual modality, video frames

are processed by Facet [38] to generate a set of features that are
composed of 35 facial action units, which represent the facial
muscle movement, including facial landmarks, head pose, etc.
To extract low-level feature of audio modality, COVAREP
[39] is utilized for generating features of acoustic signals,
includes 12 Mel-frequency cepstral coeffificients (MFCCs),
pitch tracking, speech polarity, spectral envelope, etc.

We use uncased BERT-Base as the pre-trained BERT in
our proposed SenBERT model. The rest of the parameters
are initialized randomly. Low-level Cross-Attention Layer and
High-level Cross-Attention Layer both have 2 × 4 attention
blocks and 8 attention heads. Self-Attention Layer has 4
attention blocks and 8 attention heads. We train each module
with dropouts of 0.3. We use Adam [40] as optimizer and use
a linear decay learning rate schedule with warm-up. To get
better performance, the learning rate is 5e-5 for BERT and
1e-3 for other parameters. The batch size is 32 across two
datasets. The hyper-parameters are determined according to
the performance from the validation set.
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TABLE I
COMPARISON WITH BASELINES ON CMU-MOSI AND CMU-MOSEI BENCHMARK

Model
MOSI MOSEI Data

SettingMAE Corr Acc-2 F1-Score MAE Corr Acc-2 F1-Score

TFN∗ 0.901 0.698 -/80.8 -/80.7 0.593 0.700 -/82.5 -/82.1 Unaligned

LMF∗ 0.917 0.695 -/82.5 -/82.4 0.623 0.677 -/82.0 -/82.1 Unaligned

CIA∗ 0.914 0.689 79.8/- 79.5/- 0.680 0.590 80.4/- 78.2/- Aligned

ICCN∗ 0.860 0.710 -/83.0 -/83.0 0.565 0.713 -/84.2 -/84.2 Aligned

MISA∗ 0.804 0.764 80.79/82.1 80.77/82.03 0.568 0.724 82.59/84.23 82.67/83.97 Aligned

MulT∗ 0.871 0.698 -/83.0 -/82.8 0.580 0.703 -/82.5 -/82.3 Unaligned

PMR† - - -/83.6 -/83.4 - - -/82.4 -/82.1 Unaligned

CM-BERT‡ 0.729 0.791 -/84.5 -/84.5 - - -/83.6 -/83.6 Aligned

SenBERT (Ours) 0.702 0.805 83.67/85.37 83.66/85.40 0.534 0.768 84.57/85.39 84.59/85.15 Unaligned

∗: from [3]; †: from [14]; ‡: from [5]. For Acc-2 and F1-Score, we use the segmentation marker -/- to report results, where the the left-side score is calculated
as ”negative/non-negative”, while the right-side score is calculated as ”negative/positive”

V. RESULTS AND ANALYSIS

A. Comparison with Baselines

We list the results with baselines on the two datasets
in Table I. As for ”Data Setting”, we divide it into two
categories: Unaligned and Aligned. Aligned setting requires
an additional step of manually aligning the data of different
modalities according to word boundaries, while unaligned
setting directly uses unaligned sequence data for multimodal
fusion. Performance is generally better in aligned settings. It
can be observed that the proposed SenBERT model achieves
the best performance and outperforms other models in all the
evaluation metrics across the CMU-MOSI dataset and CMU-
MOSEI dataset. The results demonstrate the superiority of
our proposed model, showing the effectiveness of integrating
sense modality into BERT during fine-tuning. It is notable that
our model with unaligned setting performs superior to all the
model with aligned setting, which is an encouraging result as
we are able to perform better even with less labor cost and
time cost.

B. Ablation Study

To further explore the contributions of SenBERT, we con-
duct comprehensive ablation studies using the unaligned ver-
sion of CMU-MOSI. The results are shown in Table II.

Role of Modalities. We first explore the effect of different
modalities on our model performance. We examine perfor-
mance of the model with language-only modality and sense-
only modality. For the language-only model, we directly use
[CLS] of BERT output for sentiment prediction. For the sense-
only model, we employ the output of the Self-Attention Layer
in the Sense Block for the task. From the experimental results,
it can be seen that removing language modality or sense
modality brings a degradation in model performance. This
proves the need for a multimodal perspective on sentiment
analysis and the necessity to integrate sense information in

TABLE II
ABLATION STUDIES ON CMU-MOSI DATASET.

Ablation MAE Corr Acc-2 F1-Score

Role of Modalities

Language Only 0.741 0.762 82.65/84.16 82.64/84.19
Sense Only 0.876 0.657 76.87/77.66 76.86/77.60

Role of Auxiliary Tasks

W/O Llan 0.732 0.771 82.94/84.60 82.90/84.61
W/O Lsen 0.743 0.759 82.36/84.15 82.32/84.16

Role of Fine-tuning

Fixed 0.764 0.729 81.92/83.08 81.95/83.16
Random 1.139 0.508 69.53/69.97 69.61/70.15

Full Model, All Modalities 0.702 0.805 83.67/85.37 83.66/85.40

BERT during fine-tuning. It is also observed that the language
modality itself can achieve excellent performance, significantly
stronger than the sense modality, mainly due to the benefits
of pre-training.

Role of Auxiliary Tasks. We also perform ablation study
on the design of multi-task learning. It can be observed that
the performance degrades without auxiliary tasks. It shows that
multi-task learning is important to improve the performance
of multimodal sentiment analysis. In particular, the unimodal
task of sense modality is more effective in our task. We believe
that this is because sense modality has poorer performance and
is less convergent than language modality, while introducing
the unimodal sentiment analysis task of sense modality can
encourage the model training process to take into account the
sense modality instead of the language modality alone, thus
making the sense modality better complementary to provide
more comprehensive sentiment information.

Role of Fine-tuning. Lastly, we examine the effect of fine-
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tuning strategy. Here, we consider two methods of applying
BERT: fixed pre-trained parameters and random initialization.
It can be seen that the performance drops without fine-tuning
strategy. With fixed parameters, BERT is simply treated as a
feature extractor, making it difficult to adapt the model to new
data distributions and multimodal interaction scenarios. With
random initialization, BERT of such magnitude cannot work
due to the lack of long-term pre-training on large amounts of
data. This observation clearly demonstrates the necessity of
fine-tuning BERT in multimodal sentiment analysis.

VI. CONCLUSION

In this paper, we introduced the Sense-aware BERT (Sen-
BERT) for multimodal sentiment analysis. Different from pre-
vious works, we integrate visual and audio modalities into the
pre-trained BERT model rather than only used text information
during fine-tuning. We employ low-level and high-level cross-
attention layer to capture the interaction between different
modalities. Additionally, Unimodal sentiment analysis task is
used for multi-task learning to further enhance performance.
Our experiments demonstrated the superior performance of
SenBERT on the CMU-MOSI and CMU-MOSEI datasets over
previous baselines. Ablation studies were performed to further
study the influence of the individual components in SenBERT.
In fact, our methods not only enable the fusion of sense
modality information, but also provide a framework for the
fusion of other heterogeneous information in BERT. Moreover,
the pre-processed features of visual and audio modality limit
the performance. In the future, we will conduct an end-to-end
network for multimodal sentiment analysis.
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