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ABSTRACT

Federated learning (FL) has enabled global model training on
decentralized data in a privacy-preserving way. However, for
tasks that utilize pre-trained language models (PLMs) with
massive parameters, there are considerable communication
costs. Prompt tuning, which tunes soft prompts without mod-
ifying PLMs, has achieved excellent performance as a new
learning paradigm. In this paper, we want to combine these
methods and explore the effect of prompt tuning under FL.
We propose ”FedPrompt” studying prompt tuning in a model
split aggregation way using FL, and prove that split aggrega-
tion greatly reduces the communication cost, only 0.01% of
the PLMs’ parameters, with little decrease on accuracy both
on IID and Non-IID data distribution. We further conduct
backdoor attacks by data poisoning on FedPrompt. Experi-
ments show that attack achieve a quite low attack success rate
and can not inject backdoor effectively, proving the robust-
ness of FedPrompt.

Index Terms— FL, prompt, PLM, split learning

1. INTRODUCTION

Pre-trained language models [1, 2, 3] are widely used in
many tasks by fine-tuning paradigm. However, fine-tuning a
PLM with a large number of parameters would be memory-
consuming. Recently, prompt tuning, which consists of soft
prompt, text, PLM and verbalizer, has achieved excellent
results [4]. A fixed PLM and different soft prompts can be
applied to different downstream tasks. Freezing the parame-
ters of PLM and only tuning soft prompt significantly reduces
the number of training parameters.

With mobile devices becoming primary devices for many
users, massive data is generated and distributed. It is chal-
lenging to make use of these devices and data securely. A data
center is required to collect data for training in most cases [5],
but exchanging and storing sensitive data carries risks and re-
sponsibilities [6]. Previous distributed deep learning methods
[7, 8] propose solutions, but the computation and communi-
cation cost are unacceptable for many participants [9].

* corresponding author. This research work has been sponsored by the
Joint Funds of the National Natural Science Foundation of China (Grant
No.U21B2020) and Ant Group.

FL [10] is a learning method that aims to train a global
model over decentralized data while preserving data privacy.
In FL clients download a copy of the global model and com-
pute local gradients with local private data in each round. A
central server coordinates the distributed clients and aggre-
gates local parameters to update the global model, collaborat-
ing isolated data islands without raw data exchanging. Ad-
vanced privacy protection methods like differential privacy
(DP) can be further applied for stricter privacy protection.
[11] proposes a news recommendation method to train models
using FL, but the model size of news recommendation mod-
els is too large to communicate between clients. For example,
BERT [1] based models have more than 110M parameters.

To alleviate the above problems, we modify prompt tun-
ing in a model split aggregation way using FL, named ”Fed-
Prompt” as shown in Fig. 1. First, FedPrompt only tunes and
aggregates some soft prompts, and freezes PLMs to decrease
communication costs. Second, we test the security of Fed-
Prompt because like PLMs, upload and download prompts be-
tween public platforms and personal users carries in backdoor
attacks. Experiments carried on various NLP tasks in Sec. 3.2
prove that FedPrompt reduces the communication cost with
little decrease on accuracy. Further experiments on backdoor
attack show that poisoning training data can not establish a
shortcut between the specific trigger word and the target la-
bel word. Compared to the method of aggregating and tun-
ing all parameters, FedPrompt is much more communication-
efficient. And compared to prompt tuning without using FL,
FedPrompt outperforms in privacy-preserving. We also con-
sider other prompt types and local differential privacy (LDP)
to improve the performance.

2. THE PROPOSED METHOD

2.1. Preliminaries

In FL, suppose there are K clients, each client hosts a private
dataset Dk = {(xk, yk)} owning nk samples. We use θt and
θkt to denote the parameters of global model and kth local
model in communication round t. Based on FedAvg [10],
the aggregation process is computed as θt+1 =

∑K
k=1

nk

n θkt ,
where n = |D| =

∑K
k=1 nk is the total num of global

combined data and D ≜
⋃

k∈[K]Dk is the global combinedIC
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Fig. 1. Structure of FedPrompt and full PLM fine-tuning using FL. The above is full PLM fine-tuning using FL, all parameters
(framed pink nodes) need to be updated. The bottom is FedPrompt, only soft prompt (framed pink nodes) need to be updated.

dataset. If data distributions are IID (Independent Identically
Distribution), all clients have the same number of samples,
then nk/n could be replaced by 1/K.

In a text classification task, xk are the inputs and yk are
corresponding class labels. Each x(i) ∈ xk consists of to-
kens x(i) = {x(i)

1 , x
(i)
2 , · · · , x(i)

l }, where l is the length of
single input. The prompt tuning structure is composed of
the soft prompt p, the template T (·), the verbalizer V(·)
and the PLM M(·). Soft prompt p consists of tokens
p = {p1, p2, · · · , pm}, whose parameters are trainable. m is
the number of the soft prompt tokens. T (·) is a function to
define where tokens of x(i) and p are placed. After applying
T (·), we obtain x

(i)
prompt = T (x(i),p). At least one [MASK]

token is placed into the x
(i)
prompt forM(·) to predict the label

word. V(·) is a map function to map the label word to the
class ŷ = V(w). Usually, each class can have one or more
label words. We call T a multi-word verbalizer when each
class has more than one label word, such as {positive: good,
great; negative: bad, terrible;}. Input x(i)

prompt toM, we can
obtain the encoded feature [MASK]. By a softmax function,
we can compute the probability that the label word w can fill
the masked position. The label word with the highest proba-
bility is the predict word w = M(x

(i)
prompt) and the predict

class can be obtained by ŷ = V(w). We rewrite the prompt
tuning process as ŷ(i) = f(x(i),p, θ).

2.2. FedPrompt

As mentioned before, in normal prompt tuning the whole
model is split into four parts, and only PLM (using fine-

tuning) and soft prompt have trainable parameters. We
use F and P to denote their parameters seperately, then
in round t the global model parameters θt can be denoted as
θt = Ft+Pt. In FedPrompt, we fix Ft to learn a set of θ over
D with the objective to solve:

argmin
P
L(P ) =

K∑
k=1

nk

n
Lk(P ) (1)

where Lk(P ) is the empirical loss of client k:

Lk(P ) = E(x(i),y(i))∈Dk
ℓk(f(x

(i),p, P ), y(i)) (2)

In the beginning, the server initializes the whole model,
then distributes it to each client. At the beginning of round
t, the server selects clients by fraction C to participate in
this round, distributes the global soft prompt parameters Pt to
them, and each selected client k replace the local P k

t−1 with
Pt, which means P k

t = Pt. As PLM is fixed, F k
t = F k

t−1.
Then each client conducts local training with optimizer only
for P k

t , gets its updated soft prompt parameters P k
t and sends

them back to the server in parallel. The local training is same
as normal prompt tuning process. Finally, the server performs
the aggregation as follows:

Pt+1 ←
⌈C·K⌉∑
k=1

nk

Nt
P k
t (3)

where Nt =
∑⌈C·K⌉

k=1 nk is the amount of participated data in
round t. Except for prompt tuning, there are also other prompt
methods such as P-tuning[12] and Prefix-Tuning[13]. We also
design FedPrompt for these prompt models in a similar way.
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2.3. Poison FedPrompt

In FL, it is acknowledged that malicious clients may partici-
pate in training [14]. After initialization, each client has full
knowledge of the model structure and parameters. Consider-
ing that attacker has control of one or more clients and mod-
ifies the local training data. The goal of attacker is to inject
backdoor into poisoned prompt. According to [15], to poison
FedPrompt, firstly, modify the training dataset. Attacker tries
to establish a shortcut between the trigger ∆ and target label
lt. We define the poison function as P(·), then we have sin-
gle poisoned data (x

(i)
p , t) = P(x(i),∆, lt), where modified

target t ̸= y(x(i)). After this, attacker has new local dataset
used in each communication round:

D(poison)
k = {(x(i)

p , t)}, i ∈ λnk (4)

D̂k = D(poison)
k ∪ Dk (5)

where λ is the poison rate. Secondly, using modified D̂k to
update parameters Pk. Then the objective function of mali-
cious client k as follows:

P k
p =argmin

Pk
p

{E
(x

(i)
k ,y

(i)
k )∈Dk

ℓk(f(x
(i)
k ,p, P k

p ), y
(i)
k )

+E
(x

(i)
k ,y

(i)
k )∈D(poison)

k

Ik(f(x
(i)
p ,p, P k

p ) ̸= t)} (6)

3. EXPERIMENTS

3.1. Experimental Setup

Dataset First, text classification tasks including sentiment
analysis, toxicity detection and spam detection. For senti-
ment analysis, we use the Stanford Sentiment Treebank (SST-
2)1 and IMDB1. We use the OffensEval 1 and the Twitter
[16] in toxicity detection. And for spam detection, we use
the Enron [17], and the Lingspam [18]. Second, sentence-
pair classification tasks. We use Question Natural Language
Inference (QNLI) [19] and Recognizing Textual Entailment
(RTE)1 dataset. We divide all these datasets into ten clients.
In IID setting, the whole dataset is divided into ten equal parts.
In Non-IID setting, as the tasks only having two labels {0,1},
different client has unequal data quantity using Dirichlet dis-
tribution parameterized by α as in prior works [20].
Model and Training Details We choose PLMs including the
base versions of BERT [1], Roberta [2] and Google T5 [3].
We use the Adam optimizer for BERT and Roberta, and the
Adafactor optimizer for T5. In main experiments, we use a
one-to-one verbalizer and a simple text classification template
”[text] is [MASK].” having 20 soft prompt tokens in the head.
Following [4], we set the learning rate to 0.3. Following [21],
we assume there are a server and K = 10 clients. We use a
FedAvg system to implement the FL setting. The number of
max local step is set to 1000, compared to 30,000 in [4]. The

1https://huggingface.co/datasets/

number of communication rounds is set to 50, compared to
100 in [21] and [14].
Metric We use the amount of communicated parameters to
evaluate communication cost. Also we use accuracy (ACC)
which represents the proportion of the clean samples correctly
classified by the model to measure the performance of the
model on benign task. Attack Success Rate (ASR) represents
the proportion of the poisoned samples misclassified as the
target class, which is used to evaluate the attacking perfor-
mance.
Baseline Algorithm To make a fair and reasonable compar-
ison with our proposed FedPrompt, we choose the most re-
lated work [22], studying full-parameter fine-tuning, as FL
baseline. Due to full-parameter fine-tuning requires lots of
calculations, we only reproduce their method with above FL
setting on IID SST-2 task.

Model FL Method ACC Comm. Cost Ratio

BERT FedPrompt 90.16 0.016M 0.014%
Fine-tuning 91.02 109.530M 100.000%

ROBERTA FedPrompt 92.43 0.016M 0.013%
Fine-tuning 93.57 124.714M 100.000%

T5 FedPrompt 92.69 0.015M 0.007%
Fine-tuning 93.79 222.919M 100.000%

Table 1. The main results of FedPrompt and full-parameter
fine-tuning on IID SST-2 task.

3.2. Main Results

In FedPrompt, the amount of learnable parameters is the
same as communication costs. As shown in Table 1, Fed-
Prompt condenses communication costs to nearly 0.01% of
raw PLMs, making many devices applicable for scenarios
with communication constraints.

The main results of FedPrompt summarized in Table 2
demonstrate that FedPrompt has little decrease on accuracy
while greatly reduces the communication cost. Specifically,
FL works well with prompt tuning, only a few local train-
ing steps and communication rounds contribute to a well-
performed global model. For most tasks, FedPrompt achieves
more than 90% ACC on clean data, and there is only a little
decrease, almost less than 3%, with Non-IID data distribution
than IID data distribution. Experiments on RTE task have a
weaker result than other tasks. Considering that RTE only
have 2240 training samples in total, which is the least among
all tasks, and after splitting to ten clients each client only have
a few samples to train soft prompt, we assume the weaker per-
formance because of lack of data.

On poison data, nearly all tasks get ACC drop less than
2% compared to on clean data. Even some tasks show a better
ACC. We think this is because poisoning the original dataset
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Mode Dataset
BERT ROBERTA T5

IID Non-IID IID Non-IID IID Non-IID
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

Clean

SST-2 90.16 12.42 89.45 16.36 92.43 10.28 92.23 7.48 92.69 9.58 92.32 6.31
IMDB 91.08 12.66 89.26 11.42 92.80 9.15 92.53 7.66 92.89 9.69 91.24 11.33

OffensEval 82.64 9.84 80.47 8.55 81.05 13.87 80.34 5.98 79.30 12.58 78.83 10.65
Twitter 94.02 4.96 93.82 3.05 94.39 4.61 93.64 5.41 93.35 3.86 92.80 4.21
Enron 97.60 3.20 97.43 4.02 97.85 2.27 97.30 7.34 97.22 6.73 96.95 5.87

Lingspam 97.47 0.00 96.89 0.00 97.43 0.00 96.47 0.00 97.07 0.00 96.27 0.41
QNLI 83.36 28.35 82.25 30.46 86.44 14.81 85.43 12.10 89.06 10.87 84.48 12.44
RTE 54.87 35.21 54.15 42.73 60.32 36.99 57.51 44.52 76.51 22.95 73.64 22.60

Poison

SST-2 89.11 13.30 88.76 14.60 91.55 11.55 92.12 9.73 92.20 8.74 91.51 9.07
IMDB 90.14 14.36 89.12 11.69 92.46 9.05 91.53 10.78 91.88 9.54 90.86 13.87

OffensEval 80.93 10.13 80.11 9.94 79.65 17.26 78.95 7.23 78.72 15.97 77.74 15.06
Twitter 94.10↑ 6.01 93.42 7.71 94.15↑ 4.02 93.22 4.76 93.25 5.28 92.98↑ 4.13
Enron 97.37 4.20 98.18↑ 4.87 98.03↑ 3.53 97.16 8.20 97.88↑ 8.13 97.12↑ 6.80

Lingspam 97.11 4.03 96.02 3.98 95.89 5.77 95.71 4.79 96.83 4.26 95.66 4.14
QNLI 84.48↑ 29.44 82.07 27.22 86.92↑ 18.82 85.30 8.33 85.56 9.15 84.33 14.26
RTE 54.51 31.23 60.29↑ 39.21 55.60 38.08 55.96 39.18 76.43 20.82 73.29 25.41

Table 2. ACC (%) and ASR (%) of FedPrompt on IID and Non-IID data distribution.

can be considered as data augmentation, and attacking has the
similar effect to adversarial training. After backdoor attack,
with poison ratio at 10% (all training data poisoned on 10%
clients selected), all experiments on different tasks and mod-
els do not show a obvious rise in ASR, which suggests that
FedPrompt has robustness to backdoor attack. We think this
is because aggregation process offsets the backdoor.

Token Num 1 5 10 20

ACC 87.11 89.28 89.62 90.16

Table 3. ACC (%) with different number of soft tokens.

Method BERT ROBERTA T5

FedPrompt w/o LDP 90.16 92.43 92.69
FedPrompt w/ LDP 85.73 86.88 86.14

Table 4. ACC (%) with and without LDP.

Method
BERT ROBERTA T5

ACC Comm. ACC Comm. ACC Comm.

α 90.16 0.016 92.43 0.016 92.69 0.015
β 90.99 25.420 93.27 25.420 93.35 25.420
γ – – – – 76.85 9.853

Table 5. ACC (%) and communication costs (M) with dif-
ferent prompt methods. Denote prompt tuning as method α,
P-tuning as β and Prefix-Tuning as γ.

3.3. Ablation study

Number of Soft Tokens We tested the results under different
numbers of soft tokens, as shown in Table 3, using more soft
tokens will lead to better results. However, it also increases
the communication cost under FL.
FedPrompt with LDP As we mentioned before, LDP is
an effective way to defense data leakage. After clipping the
gradients and adding LaPlace noise on parameters, Table 4
shows that LDP protects the privacy with the cost of accuracy
decreased by about 5%.
Prompt methods We also experiment on P-tuning and
Prefix-Tuning (only supports T5 now2). As shown in Ta-
ble 5, among the three prompt methods prompt tuning gets
the best performance combining ACC and communication
costs. P-tuning has the best ACC performance but quite a lot
parameters.

4. CONCLUSION

We propose FedPrompt to use federated prompt tuning on
decentralized data in a communication-efficient and privacy-
preserving way. We employ a split aggregation method that
freezing extensive PLMs parameters and only tuning and ag-
gregating soft prompts. In this way we condense the com-
munication costs to only 0.01% compared to PLMs, making
many devices applicable for scenarios with communication
constraints. Experiments on both IID and Non-IID data distri-
bution using three mainstream models demonstrate the accu-
racy of FedPrompt. We also prove the robustness to backdoor
attack and use LDP to further protect the privacy.

2https://github.com/thunlp/OpenPrompt
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