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Abstract. The advent of non-autoregressive machine translation (NAT)
accelerates the decoding superior to autoregressive machine transla-
tion (AT) significantly, while bringing about a performance decrease.
Semi-autoregressive neural machine translation (SAT), as a compro-
mise, enjoys the merits of both autoregressive and non-autoregressive
decoding. However, current SAT methods face the challenges of
information-limited initialization and rigorous termination. This paper
develops a layer-and-length-based syntactic labeling method and intro-
duces a syntactic dependency parsing structure-guided two-stage semi-
autoregressive translation (SDPSAT) structure, which addresses the
above challenges with a syntax-based initialization and termination.
Additionally, we also present a Mixed Training strategy to shrink expo-
sure bias. Experiments on six widely-used datasets reveal that our SDP-
SAT surpasses traditional SAT models with reduced word repetition and
achieves competitive results with the AT baseline at a 2× ∼ 3× speedup.

Keywords: Non-autoregressive · Machine translation · Syntactic
dependency parsing

1 Introduction

While autoregressive neural machine translation (AT) maintains cutting-edge
performance, its applications in large-scale and real-time scenarios are severely
restricted by the slow inference speed [3,4]. In contrast, non-autoregressive
(NAT) models, based on the independence hypothesis, significantly increase
inference speed through parallel decoding but experience reduced perfor-
mance [4,5,10]. As a compromise between AT and NAT, semi-autoregressive
(SAT) models [15,21] utilize both autoregressive and non-autoregressive proper-
ties in their decoding, in which SAT models not only capture target-side depen-
dencies more effectively than NAT models, but also enhance translation efficiency
beyond AT model [15,21,22].

The primitive equal-length segmented SAT models in [15], which decode sen-
tence segments non-autoregressively and generate words within those segments
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autoregressively, adopt the independence assumption and encounter the multi-
modality problem—the multi-modal distribution of target translations is diffi-
cult to capture [4]. To handle the multi-modality errors in primitive SAT of
equal-length segmentation, [15] further proposes to expose the model to some
unequal-length segmented samples in training and remove duplicate segments
in inference. However, its mixed segmentation criterion is not clear enough, and
its additional operation to remove repetitive segments is not straightforward.
Section 5 shows detailed translation examples.

Different from [15], we attribute the multi-modality problem of SAT to two
limitations: (i) information-limited initialization: during decoding, the SAT
decoder which is initialized by a sequence of [BOS], lacks instructions on the
subsequent prediction. (ii) rigorous termination: for SAT, dividing sentences
into equal-length segments is simplest and most time-efficient [15], while it would
lead to SAT learning the rigorous equal-length termination pattern. The multi-
modality problem leads to repeated or absent tokens. For example, in translation
“ [BOS] There are lots of [BOS] of flowers outside.”, the first segment decodes
the final word “of” to keep the same length as the second segment, which starts
decoding from “of”, and results in repetition. These same factors also contribute
to the token missing, like “ [BOS] There are lots [BOS] flowers outside.”, where
“of” is omitted. Therefore, making initialization more informative and termina-
tion more reasonable in SAT is worth exploring.

In this work, we present a Syntactic Dependency Parsing structure-guided
Semi-Autoregressive Translation model (SDPSAT) to overcome the two limi-
tations above. In a syntactic dependency parsing tree, each branch corresponds
to one sentence segment. As decoding branches from the root, corresponding
sentence segments are decoded parallelly, which fits well with the global non-
autoregressive and local autoregressive decoding scheme in SAT. Inspired by
the decoding of syntactic dependency parsing tree and SAT, we design a layer-
and-length-based tree transformation and traversal techniques to generate the
syntactic structure labels. Specifically, the syntactic labels in the syntactic tree
serve for two primary functions. Firstly, the syntactic structure labels are used as
prediction guides, which offer content guidance for improved initialization dur-
ing subsequent inferences. Secondly, syntactic structure labels also determine
termination criteria in which sentences are divided into semantically consecu-
tive segments throughout the training process. Additionally, we provide a Mixed
Training technique to shrink the exposure bias between training and inference.

Our SDPSAT delivers the best translation quality within the SAT group and
achieves a comparable translation quality with AT baselines on six benchmarks
with a 2× ∼ 3× speedup. Furthermore, SDPSAT achieves a low word repetition
rate of about 0.30%–0.60%. The following is a summary of our contribution:

(i) We design a layer-and-length-based syntactic labeling method to integrate
syntactic dependency parsing structure into SAT, which allows for a more flexible
termination and a better initialization for the translation decoder.

(ii) We employ a Mixed Training strategy to mitigate the discrepancy
between training and inference, ultimately enhancing translation performance.
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(iii) According to experimental results on six widely-used datasets, SDPSAT
not only expedites decoding but also improves translation quality with reduced
repetition compared to NAT competitors.

2 Related Works

NAT accelerates machine translation inference by adopting the independence
hypothesis. However, NAT faces a serious multi-modality problem [3,4], and
numerous approaches have been presented to deal with it. Based on the decoding
strategy, existing NAT works mainly fall into three categories: iterative NAT,
fully NAT, and SAT [22]. Iterative NAT refines the translation in multiple steps
at the cost of inference speed [3,5,6]. Fully NAT maintains a speed advantage
by decoding in a single round and handles the multi-modality problem with the
latent variables [1,10,16,27], new training objectives [8,23], and novel model
architecture [26]. SAT [15,21] combines the properties of fully NAT and AT
in decoding. [21] first proposes Semi-NAT with a globally AT but locally NAT
decoding style, while [15] designs Semi-NAT with globally NAT but locally AT
decoding methods and recovers from the repetition errors. The decoding pattern
of our model aligns with that of [15].

As a fundamental technology for natural language processing (NLP), syn-
tactic parsing analyzes the syntactic dependency between sentence compo-
nents [2,7,25]. Previous researchers have introduced syntactic information to
enhance NAT. [9] integrated syntactic tags at the word embedding level for
NAT. [23] designed a novel training objective to eliminate the issue of syn-
tactic multi-modality. [1] enhanced NAT by constituency parsing information.
However, integrating syntactic dependency parsing into SAT is still uncharted
territory. Different from the prior studies, we first present an innovative two-
stage syntactic dependency parsing-based SAT framework. Our model is closely
related to [1], but we differ in both aspects of modeling syntactic structure and
decoding scheme: (i) they introduce constituency labels with chunk size, while
we focus on dependency parsing and design a layer-and-length-based traversal
to obtain syntactic labels with depth, which shrinks syntactic vocabulary and is
more conducive to model learning; (ii) they adopt a single-round Mask-Predict
decoding with length predetermined constituency, while we insist on Semi-NAT
decoding to better comprehend the target-side dependency within segments and
own a more flexible termination, which ultimately resolves the multi-modality
problem.

3 Methodology

This section introduces SDPSAT in detail, including the layer-and-length-based
method to get dependency labels from the syntactic dependency tree, the two-
stage decoding of SDPSAT, and the Mixed Training strategy.
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3.1 Layer-and-Length-Based Syntactic Labeling

We design the layer-and-length-based method to get the syntactically annotated
sentence before training, and the syntactic labels are used to supervise the train-
ing of the parse decoder. Figure 1 gives an illustration of the whole process.

(1) Syntactic Dependency Parsing

(2) Tree Transformation

(3) Depth-first Traversal (L=2,M=2)

(3) Depth-first Traversal (L=1)

(Tree A) (Tree B)

Fig. 1. Performing layer-and-length-based syntactic labeling for the input sentence.
The layer and length denote the deepest dividing layer L and the maximum segment
size M of the dependency parsing tree, respectively.

Dependency Parsing. Before tree transformation and traversal, we conduct
syntactic dependency parsing. Each sentence is parsed into several tuples, which
can be expressed formally as “relation (governor, dependent)”, where the gov-
ernor represents the header, the dependent is the modifier of the header and
the relation represents the syntactic dependency between the header and the
dependent. Inspired by [7], we treat syntactic labels (relation) and words (gover-
nor, dependent) equally as tree nodes and represent each word node with token
and positional index (i.e., It-1 in Fig. 1). The syntactic parsing tree is depicted
in Tree A of Fig. 1.

We use stanza toolkits [13] to parse the target sentences, which provide
leading-edge syntactic dependency parsing pre-trained models for 66 languages
with highly accurate performance.

Tree Transformation and Traversal. The word and label nodes alternate in
the original syntactic tree branches, and make the tree structure complicated.
To match our proposed two-stage SAT decoding, we simplify the tree based on
the deepest dividing layer L and the maximum segment size M . The label nodes
deeper than L will be ignored in traversal for simplification. If the leaves of a
L − 1 (note that L > 1) layer label node are equal to or more than M , it would
be further divided according to its subsequent L layer label nodes. Restricted
by the longest sentence segment, the SAT decoding could be accelerated with a
larger L and an appropriate M .
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Then we detail the tree transformation and traversal process. First, we move
the word nodes to leaf nodes and keep the sentence sequential information for
the subsequent traversal following [7]. In particular, if the positional index of
the label’ child is greater than its parent, the label node is adjusted to the
right side of its parent, and vice versa. Second, based on L and M , we conduct
a depth-first traversal on the transformed tree to get the annotated sequence.
Specifically, when L > 1, we append the layer number of label nodes after the
label to distinguish the layer (e.g., [nsubj:1], [amod:2]). Tree B in Fig. 1 shows
the process.

Fig. 2. An encoder and two decoders constitute SDPSAT. The translation decoder
translates semi-autoregressively based on the syntactic structure given by the parse
decoder. The parse decoder can be either AT or NAT. We display the NAT one here.

3.2 Two-Stage Decoding

As depicted in Fig. 2, the first SDPSAT decoding stage is to use the parse decoder
to predict the syntactic structure of the target, and the second stage is to utilize
the translation decoder to take the previous syntactic structure as the initializa-
tion and generate segments simultaneously.

Stage 1: Syntactic Labels Prediction. In this stage, we predict the syn-
tactic labels of the transformed syntactic dependency parsing tree, which serve
as syntactic structure hints for the next decoding stage. We design two feasible
decoding schemes for this stage:

(i) Fully NAT We adopt Mask-Predict [3] to predict the label nodes of the
transformed tree. Following the setting of [3], we employ a length predictor in
the encoder to determine the length of the sentence before prediction. With the
source sentence X, the probability distribution of the corresponding syntactic
label Z is:

P (Z|X) = P (n|X)
n∏

t=1

P (zt|X) , (1)

where n refers to the length of the syntactic label sequence. During training,
we mask a specific percentage of tokens randomly and calculate the loss of the
observed tokens, following [3]. As for inference, the parse decoder receives a
sequence of [MASK] as input and generates the syntactic label sequence.
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(ii) Fully AT A light fully-AT decoder, which only contains two layers,
is also introduced to generate the syntactic label sequence, and its conditional
probability could be expressed as:

P (Z|X) =
n∏

t=1

P (zt|z<t,X) , (2)

where z<t indicates the sequence generated prior to time-step t. We experimen-
tally demonstrate that the AT decoder can better model the syntactic structure
information, and its shallow decoder allows it to achieve decoding times close to
those of NAT.

For simplicity, SDPSAT with an AT or a NAT parse decoder is abbreviated
as SDPSAT (AT) or SDPSAT (NAT), respectively.

Stage 2: Words Prediction. With the guidance of syntactic structure labels
generated by the parse decoder, the translation decoder predicts the target words
semi-autoregressively, and the translation distribution could be written as:

P (Y |X) =
max ni∏

t=1

P (St|S<t,X, Z) , (3)

where St and S<t denote the predicted words in and before time-step t of all
the segments, and Z presents the syntactic sequence. For a target sentence with
segment lengths of {n1, n2, ..., nk}, the total decoding step is maxni.

3.3 Mixed Training Strategy

During training, the translation decoder is initialized with the ground truth
syntactic labels, while in inference, it receives the generated syntactic labels of
the parse decoder as initialization. This data distribution discrepancy, called
exposure bias [17], may harm the translation performance.

Inspired by [24], we design a strategy called Mixed Training to shrink this
discrepancy, which replaces the ground truth syntactic labels with predicted
ones in the input of the translation decoder during training with an increasing
probability. We define the probability p as follows:

p = min
{

0.5, γ
t

T

}
, (4)

where t and T represent the current and maximum steps respectively, and γ
indicates the rate controlling parameter. For better convergence, we conduct the
strategy after training for 20 epochs.

For the parse decoder of AT, we adopt Force Decoding [24] to ensure the
length of syntactic label prediction the same as the ground truth.
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4 Experiments

4.1 Setup
Datasets Preprocess. The details of datasets preparation are as follows.

(i) Datasets We use the preprocessed datasets WMT14 En↔De (about 4.5M
pairs), WMT16 En↔Ro (about 610k pairs) and WMT17 En↔Zh (about 20M
pairs) from [3] for a fair comparison with prior studies. We use sequence-level
knowledge distillation datasets for training. Specifically, the original target sen-
tences are replaced with the translation of the standard AT Transformer to
mitigate the multi-modality problem.

(ii) Preprocess The parallel sentences are preprocessed by Moses toolkits1

and partitioned into subwords with Byte-Pair Encoding [18]. The target training
set is processed by Stanza2 to obtain the syntactic labels. We retrieve around
50 and 100 syntactic labels for each dataset under the conditions of L = 1
and L = 2,M = 10. The syntactic labels constitute the vocabulary of the parse
decoder. The syntactic labels and words together make up the shared vocabulary
of the encoder and the translation decoder.

Model Configurations. We use OpenNMT-py3 as the framework. Our model
is based on Transformer (base) [20] and we strictly follow its parameter settings.
Specifically, we implement SDPSAT with a 6-layer encoder and a 6-layer trans-
lation decoder. As for the parse decoder, we adopt a 2-layer AT decoder and a
6-layer NAT decoder, respectively.

Key Baseline. AT Transformer and a series of NAT models are selected
as baselines, including iterative NAT, fully NAT and Semi-NAT. Among
Semi-NAT, there are two different decoding schemes, denoted as GALN and
GNLA. “GNLA” is the abbreviation of globally non-autoregressive but locally
autoregressive scheme, and “GALN” is the short for globally autoregressive but
locally non-autoregressive scheme. GNLA-SAT divides the sentence into equal-
length segments, and it is the common primitive model of RecoverSAT [15] and
our SDPSAT. As the decoding paradigm of SDPSAT aligns with RecoverSAT
and GNLA-SAT, we choose them as our key baselines and reimplement GNLA-
SAT. GALN-SAT [21] decodes in the opposite way to ours.

4.2 Inference and Evaluation
We use the greedy search strategy for both first-stage (AT) and second-stage
decoding. Following previous works, we evaluate the translation quality with
BLEU [11] for all the datasets except WMT17 En→Zh, which is tested by Sacre-
BLEU [12]. For the inference speed, we measure the averaged decoding latency
with batch size set to 1 on the WMT14 En→De test set, using a NVIDIA GeForce
RTX 3090 GPU.
1 https://github.com/moses-smt/mosesdecoder.
2 https://github.com/stanfordnlp/stanza.
3 https://github.com/OpenNMT/OpenNMT-py.

https://github.com/moses-smt/mosesdecoder
https://github.com/stanfordnlp/stanza
https://github.com/OpenNMT/OpenNMT-py
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4.3 Result

SDPSAT and a series of baselines are thoroughly compared in Table 1. The
results lead to the following conclusions:

(i) SDPSAT attains state-of-the-art performance within Semi-NAT model
group. SDPSAT outperforms the SAT baselines (GALN-SAT and GNLA-SAT)
with better BLEU points and comparable speedup on all benchmark datasets.
Also, SDPSAT achieves about 0.44/0.73 points improvement over its strong com-
petitor RecoverSAT (K = 2/5) on average.

(ii) SDPSAT gains comparable performance with iterative NAT and fully
NAT competitors. Compared with iterative NAT, SDPSAT (AT) achieves bet-
ter results than CMLM and DisCo, while maintaining a greater speedup. As
for fully NAT, except for REDER reaches a slightly higher BLEU on WMT16
Ro→En, SDPSAT achieves competitive performance with the remaining models.

Table 1. Performance comparison (BLEU scores and speedup rates) between SDPSAT
and baselines. L denotes the deepest dividing layer, and M denotes the maximum
segment size. K represents the segment number for SAT. G is the group size of GALN-
SAT. NPD represents Noisy Parallel Decoding. n is the sample size of NPD. iter is
an abbreviation for iteration. c is the maximum chunk size. ∗ denotes the results
under our implementation. The Mixed Training strategy is implemented for all of our
SDPSAT models after training for 20 epochs for better convergence. “–” represents the
data unreported.

Models Speed WMT14 WMT16

En→De De→En En→Ro Ro→En

AT Transformer 1.0× 27.30 – – –

Transformer∗ 1.0× 27.48 31.88 33.69 33.98

Iterative NAT CMLM (iter = 10) [3] 1.5× 27.03 30.53 33.08 33.31

DisCo (iter = 10) [6] 1.5× 27.06 30.89 32.92 33.12

LevT (iter = Adv.) [5] 4.0× 27.27 – – 33.26

Fully NAT NAT-FT+NPD (n = 100) [4] 2.4× 19.17 23.20 29.79 31.44

SynSt (c = 6) [1] 4.86× 20.74 25.50 – –

FlowSeq+NPD (n = 30) [10] 1.1× 25.31 30.68 25.31 30.68

CR-LaNMT [27] 11.0× 26.23 31.23 32.50 32.14

ReorderNAT (AT) [16] 5.96× 26.49 31.13 31.70 31.99

GLAT+NPD (n = 7) [14] 7.9× 26.55 31.02 32.87 33.51

DCRF-NAT (rescoring 19) [19] 4.39× 26.80 30.04 – –

duplex REDER [26] 5.5× 27.36 31.10 33.60 34.03

Semi NAT GALN-SAT (G = 2) [21] 2.07× 26.09 – – –

GNLA-SAT (K = 5)∗ 4.49× 22.20 26.11 30.15 29.96

GNLA-SAT (K = 2)∗ 1.97× 25.97 29.94 32.62 32.70

RecoverSAT (K = 5) [15] 3.16× 26.91 31.22 32.81 32.80

RecoverSAT (K = 2) 2.02× 27.11 31.67 32.92 33.19

SDPSAT(NAT)(L = 2, M = 10) 3.65× 25.30 30.51 32.84 32.64

SDPSAT(NAT)(L = 1) 2.94× 25.79 30.66 33.10 32.85

SDPSAT(AT)(L = 2, M = 10) 2.63× 26.88 31.12 33.39 33.32

SDPSAT(AT)(L = 1) 2.30× 27.44 31.71 33.64 33.85



612 X. Chen et al.

In addition, SDPSAT enjoys a 2× ∼ 3× speed advantage over the AT baseline
while maintains close translation quality.

(iii) The last group of Table 1 shows that SDPSAT (AT) gets a better trans-
lation quality than SDPSAT (NAT) with a slight speedup drop, indicating that
SDPSAT (AT) better captures the syntactic information than SDPSAT (NAT).
What’ s more, the inference of models with a larger deepest dividing layer could
be better expedited at the expense of slightly degraded performance.

Table 2. The performance comparison
between SDPSAT and baselines on WMT17
En↔Zh.

Model WMT17

Zh→En En→Zh

AT Transformer∗ 24.30 35.44

CMLM(iter = 10) 23.21 33.19

LevT(iter = Adv.) 23.30 33.90

DisCo(iter = 10) 23.68 34.51

SDPSAT(AT)(L = 2,M =

10)

23.78 33.60

SDPSAT(AT)(L = 1) 24.00 34.53

We perform experiments on
WMT17 En↔Zh datasets with a
huge linguistic gap, to further ver-
ify the effectiveness of our SDP-
SAT. Table 2 shows that SDPSAT
achieves high BLEU scores in both
directions, indicating that the syn-
tactic decoder could provide syntac-
tic structure hints for the target lan-
guage on the basis of the source lan-
guage despite the huge linguistic dis-
parities.

5 Analysis and Discussion

Table 3. The effect of γ on Mixed
Training
γ WMT14 WMT16

En→De De→En En→Ro Ro→En

0 26.31 31.40 32.97 33.68

10 26.53 31.58 33.93 34.69

100 26.05 30.44 32.71 33.56

The Effect of Mixed Training. To
explore the effect of the rate controlling
parameter γ in Mixed Training, we con-
ducted experiments for SDPSAT(AT) (L =
1) on four validation sets. Table 3 shows that
the parameter γ impacts the model’s perfor-
mance significantly. Mixed Training under
appropriate parameter γ improves transla-
tion quality (i.e., γ = 10), indicating that the strategy could alleviate exposure
bias. However, too large γ (i.e., γ = 100) may hurt the translation quality instead.
With a larger γ, the model is more likely to be supervised incorrectly when it
has not converged yet, which is detrimental to the training.
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Fig. 3. Performance on various length
groups.

The Effect of Sentence Length.
We group the WMT14 En→De val-
idation set according to source sen-
tence lengths and calculate their
BLEU, respectively. Figure 3 shows
that SDPSAT (AT) outperforms
GNLA-SAT for most of the lengths.
Meanwhile, when the sentence length
is greater than 20 and less than 50,
the translation performance of SDP-
SAT (AT) is very close to the AT
model, which proves the effectiveness
of SDPSAT.

Table 4. The performance (BLEU) and
repeated rates on two benchmark validation
sets.
Model WMT14

En→De De→En

BLEU Reps BLEU Reps

SDPSAT (AT) 26.53 0.60% 31.58 0.30%

SDPSAT (NAT) 25.58 1.53% 30.54 1.43%

GNLA-SAT (K = 2)∗ 25.04 2.76% 29.93 2.97%

GNLA-SAT (K = 5)∗ 22.05 20.80% 26.53 19.07%

RecoverSAT (K = 2)∗ 26.17 1.43% 30.73 1.00%

RecoverSAT (K = 5)∗ 24.33 2.10% 28.65 1.77%

The Effect of Repetition. Table 4
demonstrates that our GNLA-SAT
which adopts equal-length segmen-
tation, suffers from highly severe
multi-modality problem, while SDP-
SAT reduces word repetition sig-
nificantly. This finding indicates
that the syntactic structure could
make the meaning of each segment
clearer, leading to the improvement
of the translation quality. In addi-
tion, SDPSAT (AT) reaches a lower repetition rate than the strong competitor
RecoverSAT.

Case Study. Table 5 shows a translation comparison between SDPSAT with the
SAT baselines. We find that (i) in GNLA-SAT, where the generated sentences are
consisted of equal-length segments, the multi-modality problem is severe and the
semantically consecutive words are often separated. In contrast, SDPSAT which
relies on the syntax structure as initialization and temination criterion, gener-
ates more semantically consistent segments and more fluent translation. (ii) in
RecoverSAT, due to implicit segmentation, the length of the generated segment
varies greatly, which harms the decoding efficiency. In RecoverSAT (K = 2), the
model generates an empty segment (i.e., [BOS] [EOS]) and it even degrades to
AT model. What’ s more, RecoverSAT requires additional operation of remov-
ing duplicate segments (e.g., enough). In comparison, the decoding pattern of
SDPSAT is clearer and more straightforward.
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Table 5. Translation comparison of SAT baselines and SDPSAT(AT)(L=1; L = 2, M =
10). [BOS] and syntactic label (e.g., [obl]) denotes the segment beginning. The [EOS]

and [DEL] denotes the operation of keeping or deleting the segment for RecoverSAT.
We use the double underscores (e.g., is) for repeated tokens, dashed underline (e.g.,

) for missing words, and wave underline (e.g.,
������
targets) for semantic errors.

Source Wer sich weniger als fünf Minuten ge@@ dul@@ det, wartet unter
Umständen nicht lange genug, warnt Bec@@ ker und verweist auf einen
Beschluss des Ober@@ land@@ es@@ geri@@ chts Ham@@ m

Reference Those who tolerate less than five minutes may not wait long enough,
warns Becker, referring to a decision of the Hamm Higher Regional
Court

+Syntactic label [nsubj:1] Those who tolerate less than five minutes [aux:1]

may [advmod:1] not wait [advmod:1] long [advmod:1] enough
[parataxis:1], warns Becker [conj:1] [cc:2] and refers [obl:2] to
a decision of the Hamm Higher Regional Court [punct:1].

GNLA-
SAT

K = 2 [BOS] Anyone who
�
is

�������
tolerated less than five minutes may not wait long

enough [BOS], warns Becker and refers to a decision by the Supreme

Court Hamm

K = 5 [BOS] Anyone who
��������
condonates less than five [BOS] five minutes may not

wait for [BOS] wait for a long enough, [BOS] Becker and points to a
Hamm [BOS] decision by the Supreme Cour

Recover-
SAT

K = 2 [BOS] Anyone who tolerates less than five minutes may not wait long
enough, warns Becker and refers to a decision of the Hamm Supreme

Court. [EOS] [BOS] [EOS]

K = 5 [BOS] Anyone who tolerates [EOS] [BOS] less than five minutes may not
wait long [EOS] [BOS] enough, warns Becker and refers to a decision
by the Supreme Court Hamm. [EOS] [BOS] enough [DEL] [BOS]

[EOS]

Ours L = 1 [nsubj] Anyone who tolerates less than five minutes [aux] may
[advmod] not wait [advmod] long enough [conj], warns Becker [conj]

and refers to a decision of the Higher Regional Court of Hamm [punct]

L = 2 [nsubj:1] Those who tolerate less than five minutes [aux:1] may
[advmod:1] not wait [advmod:1] long enough [parataxis:1], warns
Becker [conj:1] [cc:2] and refer [obl:2] to a decision by the Hamm
Supreme Court [punct:1]

6 Conclusion

We develop a layer-and-length-based syntactic labeling approach and present a
novel two-stage SAT framework called SDPSAT, which enables a more flexible
termination and a better initialization for SAT decoding. Besides, we present
a Mixed Training strategy to diminish the exposure bias. Experimental results
suggest that SDPSAT excels within the Semi-NAT group and achieves compa-
rable translation performance with those strong NAT or AT competitors, while
significantly alleviating the multi-modality problem.
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