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ABSTRACT

Multimodal sentiment analysis aims to utilize different modal-
ities including language, visual, and audio to identify human
emotions in videos. Multimodal interaciton mechanism is the
key challenge. Previous works lack modeling of multimodal
interaction at different grain levels, and does not suppress
redundant information in multimodal interaction. This leads
to incomplete multimodal representation with noisy infor-
mation. To address these issues, we propose Multi-grained
Multimodal Interaction Network (MMIN) to provide a more
complete view of multimodal representation. Coarse-grained
Interaction Network (CIN) exploits the unique characteristics
of different modalities at a coarse-grained level and adver-
sarial learning is used to reduce redundancy. Fine-grained
Interaction Network (FIN) employ sparse-attention mecha-
nism to capture fine-grained interactions between multimodal
sequences across distinct time steps and reduce irrelevant
fine-grained multimodal interaction. Experimental results
on two public datasets demonstrate the effectiveness of our
model in multimodal sentiment analysis.

Index Terms— Multimodal Sentiment Analysis, Multi-
modal Fusion

1. INTRODUCTION

With a large amount of user-generated online content, such as
videos, multimodal sentiment analysis (MSA) has received
increasing attention in recent years and has important appli-
cations in human-computer interaction, video understanding,
risk management, and other fields. Unlike unimodal senti-
ment analysis tasks, multimodal models can utilize different
sources of information, such as language, visual, and audio,
which facilitate the understanding of human emotions and in-
tentions. How to model the interaction between this hetero-
geneous information is a major challenge.

Some previous works align different modality sequences
based on word boundaries and then fused them based on the
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aligned sequences [1–3]. However, manual word-alignment
process requires additional labor costs and time costs, and
neglect long term dependencies across modalities. Therefore,
recent studies [4–6] have focused on the fusion of unaligned
sequence data. Tsai et al. [4] capture long-range depen-
dencies between modalities through the attention mecha-
nism. In addition to attention mechanism, some previous
works [7–9] attempt to learn reliable cross-modal interactions
over modality-invariant subspace where the distribution is
bridged.

Although previous studies propose innovative multimodal
interaction techniques, they only focus on the correlation be-
tween words, video frames, and audio frames, neglecting
the importance of global semantics; Or they only employ
a post-fusion approach for multimodal features, inevitably
omitting some significant details. Considering the process
of human multimodal sentiment analysis, humans initially
analyze words, videos, and audio frames chronologically.
Following this, they conduct an review for a holistic judge-
ment. This is because certain emotional information can only
be discerned in the global representation, and cannot be ex-
tracted from the fine-grained elements like individual words
or transient expressions and tones. In addition, the excessive
redundancy and noise in different modalities can adversely
affect multimodal interaction and the accuracy of sentiment
analysis tasks. For instance, video frames that lack emotional
information or are unrelated to the text can pose difficulties
for multimodal interaction.

To deal with these issues, in this paper, we propose Multi-
grained Multimodal Interaction Network (MMIN) to improve
the performance of multimodal sentiment analysis. The
Coarse-grained Interaction Network (CIN) is aimed to ex-
tract modality-specific representations that capture distinctive
characteristics of each modality from a coarse-grained per-
spective. We use an adversarial learning strategy to mitigate
redundancy across modalities. The Fine-grained Interaction
Network (FIN) is designed to extract cross-modal representa-
tions, which can capture the fine-grained semantic association
between multimodal sequences across distinct time steps. We
employ sparse-attention mechanism to alleviate the negative
effects of redundant features during multimodal fine-grained
interaction. Then we fuse representations of different grain
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Fig. 1. Overview architecture of the Multi-grained Multi-
modal Interaction Network. The details of the constraint mod-
ule and CA module are shown in Fig.2
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Fig. 2. The details of the modules.

levels to provide more comprehensive multi-grained infor-
mation for multimodal sentiment analysis. Experiments on
public multimodal sentiment benchmark datasets confirm the
validity of our approach.

2. METHODOLOGY

2.1. Feature Extraction

For language modality, we feed the input text into BERT to
obtain the language feature. For video and audio modalities,
we use LSTM to capture the intra-modality interaction.

2.2. Coarse-grained Interaction Network

Encoder. We use the private encoder to extract modality-
specific representation separately. For the language modality,
we select the [CLS] vector in the BERT output as the input to
the private encoder, and for the video and speech modalities,
we select the hidden representations of the LSTM end state as
the input to the private encoder. The inputs of each modality
are denoted as hL, hV , and hA.

hP
m = Privatem(hm; θPm), m ∈ {L, V,A} (1)

We employ common encoder to obtain modality-invariant
representation. This encoder is also composed of fully-
connected layers. In contrast to the private encoder, the
parameters in the common encoder are shared for different
modalities.

hC
m = Common(hm; θC), m ∈ {L, V,A} (2)

These are coarse-grained interaction representations that
express the overall information of the modalities.

Constraint Module. As shown in Fig.2(a), we constrain
the different representations extracted by the encoder through
the constraint module to extract purer modality-specific rep-
resentations. Specifically, we constrain the outputs of the pri-
vate encoder and common encoder by a series of loss func-
tions.

The adversarial loss is used to make hC
m reflect the com-

mon features of different modalities and to ensure that hP
m can

extract the unique information of each modality. We achieve
this goal through a discriminator-based adversarial network.
The discriminator D is a multi-class classifier, which iden-
tify which modality the input feature belongs to. For hC

m, we
hope that the discriminator cannot distinguish, which means
that the modality-invariant representation belongs to the la-
tent space shared by different modalities. According to the
gradient reversal layer [10], we designed an adversarial loss
for hC

m.

Lac = − 1

n

∑
m

n∑
i=1

(
ym log

(
D
(
hC
m; θD

)))
(3)

where , yL = [1, 0, 0], yV = [0, 1, 0], yA = [0, 0, 1].
For hP

m, we hope that the discriminator can accurately dis-
tinguish, so as to represent the personal information of the
modality for the modality-specific representation. The adver-
sarial loss of hP

m is represented as:

Lap = − 1

n

∑
m

n∑
i=1

(
ym log

(
D
(
hP
m; θD

)))
(4)

The separation loss Lsep is used to make the modality-
specific representation contain purer features specific to the
different modalities. We reduce the redundancy between the
modality-specific representation and the modality-invariant
representation of the corresponding modality to ensure that
the two representations extract different aspects of the modal-
ity while reducing the redundancy between modality-specific
representations helps different private encoders to extract in-
formation unique to each modality. Previous studies [7, 11]
have shown that non-redundancy effects can be achieved by
applying orthogonality constraints to different representation
vectors. When training a batch of multimodal input, HP

m

and HC
m are two matrices, each row of which is a modality-

specific representation hP
m and a modality-invariant represen-

tation hC
m of different modalities respectively.
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Lsep =
∑
m

∥∥∥HC⊤

m HP
m

∥∥∥2
F
+

∑
(m1,m2)

∥∥∥HP⊤

m1
HP

m2

∥∥∥2
F

(5)

where ∥ · ∥2F is the squared Frobenius norm.

2.3. Fine-grained Interaction Network

To obtain fine-grained interaction, we designed the Interac-
tion Network to exploit long term dependencies between ele-
ments across modalities.

Cross-Attention Module (CA Module). Following pre-
vious work [4, 5] about multimodal fusion, we employ a
transformer variant for unaligned multimodal interaction. As
shown in Fig. 2(b), CA Module includes multi-head layer
normalization, cross-attention, and residual connection. We
perform multi-modal fusion by passing fine-grained features
of different modalities to N layers of stacked Cross-Attention
Module (CA Module). For each layer of the CA Module,
we use cross-modal sparse attention to perform fine-grained
multi-modal interactions on different modal features Xα,
Xβ . We use sparsemax [12] for the normalization of atten-
tion weights, which leads to acquisition of sparse posterior
attention weights. This causes the weights of redundant
modality features to be assigned a value of zero.

Coarse-grained Representation Guided Interaction.
There is heterogeneity between different modalities, and
modality-invariant representation can guide the modality to
focus on the most important interaction information between
different modalities. Additionally, coarse-grained informa-
tion can help fine-grained information reduce noise. We also
implement the interaction process through CA Module. The
modality-invariant representations of the different modalities
are stacked together as a query, and the other modalities inter-
act one by one as key and value. The corresponding vectors
in the CA module output sequence are used as fine-grained
interaction representations.

2.4. Fusion Layer

With the above CIN and FIN, we obtain the coarse-grained
interaction representations and the fine-grained interaction
representations. These representations are stacked into ma-
trix and then fed into the transformer layer. The individual
vectors in the output are concatenated together and fed into
fully-connected layers for sentiment prediction. We use mean
squared error loss to evaluate the quality of sentiment predic-
tion and the loss function is denoted as Lsenti.

The final loss function is expressed as follows:

L = Lsenti + αLsep + βLac + γLap (6)

where α, β and γ are the trade-off parameters.

3. EXPERIMENTS

3.1. Datasets, Metrics and Settings

We evaluate our proposed model on CMU-MOSI [13] and
CMU-MOSEI [14]. Following the previous works [4, 7, 15],
we utilize four metrics to evaluate the performance of the pro-
posed model. For the binary sentiment classification task, we
report binary classification accuracy (Acc-2) and weighted F1
score (F1-Score). For the regression task, we report mean ab-
solute error (MAE) and Pearson correlation (Corr).

To extract the features of visual modalities, video frames
are processed by Facet [16] to generate a set of features con-
sisting of 35 facial action units. To extract the features of
audio modality, COVAREP [17] is utilized for generating fea-
tures of acoustic signals. We use uncased BERT-Base as the
pre-trained BERT in our model to extract the feature of lan-
guage modality.

3.2. Comparison with Baselines

To evaluate the rationality and effectiveness of our methods,
We compare proposed model with the following recent and
competitive baselines: TFN [18], CIA [19], ICCN [20], PMR
[5], MulT [4], MISA [7], MAG-BERT [21].

The results with baselines on the two datasets are shown
in Table 1. We classify ”Data Setting” into two categories:
Unaligned and Aligned. The Aligned setting requires an addi-
tional step of manually aligning signals from different modal-
ities based on word boundaries. In contrast, the Unaligned
setting directly employs unaligned sequence data for multi-
modal fusion. Performance is generally better in aligned set-
tings. It can be observed that the proposed MMIN model
outperforms other models and obtains the best performance
across the two datasets in all evaluation metrics.

Compared to MAG-BERT [21], which requires alignment
settings, our model achieves better performance and does not
require pre-alignment, thus reducing labor and time costs.
MISA [7] emphasize the modality-specific representations,
but ignore the fine-grained interactions of different modes
in temporal order, and therefore some critical information
may be lost, resulting in inferior performance to ours. In
comparison to MulT [4] and PMR [5] which also use at-
tention mechanism to fully exploit long-term dependencies
across modalities, our approach validates the integration of
modality-specific representations into the model and achieves
superior results. The above observations suggest that it is
beneficial to consider both fine-grained interaction informa-
tion and modality-specific representations by CIN and FIN in
multimodal sentiment analysis.

3.3. Ablation Study

To further explore the contributions of SIN, we conduct com-
prehensive ablation studies using the unaligned version of
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Table 1. Comparison with baselines on CMU-MOSI and CMU-MOSEI benchmark

Model MOSI MOSEI Data
SettingMAE Corr Acc-2 F1-Score MAE Corr Acc-2 F1-Score

TFN∗ 0.901 0.698 -/80.8 -/80.7 0.593 0.700 -/82.5 -/82.1 Unaligned
CIA∗ 0.914 0.689 79.8/- 79.5/- 0.680 0.590 80.4/- 78.2/- Aligned

ICCN∗ 0.860 0.710 -/83.0 -/83.0 0.565 0.713 -/84.2 -/84.2 Aligned
PMR† - - -/83.6 -/83.4 - - -/82.4 -/82.1 Unaligned
MulT∗ 0.871 0.698 -/83.0 -/82.8 0.580 0.703 -/82.5 -/82.3 Unaligned
MISA∗ 0.783 0.761 81.8/83.4 81.7/83.6 0.555 0.756 83.6/85.5 83.8/85.3 Aligned

MAG-BERT‡ 0.748 0.790 82.61/84.42 82.59/84.71 0.548 0.757 82.63/84.84 82.62/84.86 Aligned
MMIN (Ours) 0.741 0.795 83.53/85.52 83.46/85.51 0.542 0.761 83.84/85.88 83.91/85.76 Unaligned

∗: from [7]; †: from [5]. Models with ‡ are reproduced under the same conditions. For Acc-2 and F1-Score, we use the segmentation marker -/- to report
results, where the the left-side score is calculated as ”negative/non-negative”, while the right-side score is calculated as ”negative/positive”

Table 2. Ablation Studies on CMU-MOSI Dataset.
Ablation MAE Corr Acc-2 F1-Score

Role of Representations

w/o CIN 0.773 0.777 82.07/83.84 82.03/83.86
w/o FIN 0.769 0.783 82.43/84.27 82.31/84.45

Role of Modality

w/o Text 1.313 0.554 75.80/78.05 75.22/77.62
w/o Video 0.775 0.786 81.92/83.99 81.86/84.00
w/o Audio 0.801 0.789 81.63/83.54 81.68/83.63

Role of Regularization

w/o Lsep 0.755 0.785 82.49/84.38 82.50/84.45
w/o Lac 0.784 0.763 82.97/83.80 81.98/83.76
w/o Lap 0.754 0.789 82.94/84.45 82.94/84.50

MMIN(Full) 0.741 0.795 83.53/85.52 83.46/85.51

CMU-MOSI. The results are shown in Table 2.
Role of Representations. First, we removed CIN and

FIN respectively to examine the validity of the two differ-
ent types of representations in the proposed model. The pro-
cess of representation learning is preserved when perform-
ing the experiments, and only parts of the representations are
employed in the final prediction phase. Experimental results
show that either removal of CIN or FIN leads to the degrada-
tion of model performance. This indicates that both networks
are necessary and meaningful. CIN provides information on
the individuality of the different modalities while FIN pro-
vides information on the fine-grained interactions of tempo-
ral order between the modalities. The two distinct represen-
tations complement each other to improve the model perfor-
mance.

Role of Modality. We explore the effect of different
modalities on our model performance. When performing the

experiments, we remove the corresponding modality in both
CIN and FIN. It can be observed that the removal of any
modality leads to performance degradation, indicating that
each modality contributes to the model and our model is able
to fully exploit the value of each modality to the network.
The model performance decreases significantly after moving
out of the text modality, probably because the text modality
contains more information and is more critical for multimodal
sentiment analysis tasks.

Role of Regularization. In order to explore the role of
different regularizations, we removed each loss function sep-
arately to perform the experiment. We observe that all three
loss functions improve model performance. When Lsep is re-
moved, it is difficult for the model to extract modality-specific
representation from the modalities. The representation con-
tains redundant noise which leads to the decrease of model
performance. Lac can help extract common information from
the model and thus assist the model in identifying individ-
ual information, therefore, the lack of Lac has a negative im-
pact on the network training. When Lap is moved out, the
modality-specific representation learned by the model may be
trivial, causing bad performance.

4. CONCLUSION

In this paper, we introduce Multi-grained Multimodal Inter-
action Network (MMIN) for multimodal sentiment analy-
sis. Coarse-grained Interaction Network extracts modality-
specific representation that capture the distinctive charac-
teristics between modalities while Fine-grained Interaction
Network extracts cross-modal representation that learns cor-
relations between elements from different modalities. Our
comprehensive experiments demonstrated the superiority of
MMIN. In addition, our approach can be extended to other
multimodal applications.
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