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ABSTRACT

Lipreading has been rapidly developed recently with the help
of large-scale datasets and large models. Despite the signif-
icant progress made, the performance of lipreading models
still falls short when dealing with unseen speakers. Therefore,
it is necessary to utilize the speaker’s videos for fine-tuning to
obtain a speaker-adaptive model. However, this approach can
result in high overheads, especially for full fine-tuning. To
address this problem, we propose a novel parameter-efficient
fine-tuning method based on spatio-temporal information
learning. In our approach, a low-rank adaptation module
which can influence global spatial features and a plug-and-
play temporal adaptive weight learning module are designed
in the front-end and back-end network, which can adapt to
the speaker’s unique features such as the shape of the lips
and the style of speech, respectively. An Adapter module is
added between them to further enhance the spatio-temporal
learning. The final experiments on the LRW-ID and GRID
datasets demonstrate that our method achieves state-of-the-art
performance even with fewer parameters.

Index Terms— Visual Speech Recognition, Speaker-
Adaptive Lipreading, Parameter-Efficient Fine-Tuning

1. INTRODUCTION

Lipreading, also known as visual speech recognition, is a
technology that recognizes speech content from the move-
ments of a speaker’s lip. It is useful in several real-world
applications like assisting the hearing impaired, generating
subtitles automatically and aiding audio speech recognition
in noisy environments. This technique has developed rapidly
in recent years by using larger models and more training
data[1, 2, 3]. However, existing models degrade rapidly in
performance when recognizing speakers who are absent in
the training set. For instance, [3] recognize seen speakers’
utterances with 18.0% Word Error Rate (WER), but 30.5%
WER for unseen speakers. The variance in error rate can be
attributed to the model’s sensitivity towards personal charac-
teristics of speakers, such as lip shape and talking style. This
issue hinders practical application of the current lipreading
model since it frequently encounter speakers who are not
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presented in the training dataset. To address this problem, a
speaker-adaptive model is needed by fine-tuning with videos
from the specific speaker. However, it is noteworthy that
tuning the entire model not only introduces a significant com-
putational burden due to the need to adjust all parameters, but
also results in model forgetting the knowledge learned from
extensive data. Hence, parameter-efficient speaker-adaptive
fine-tuning methods are required.

A small amount of work[4, 5] has therefore begun to fine-
tune lipreading networks to obtain speaker-specific models
with as few training parameters as possible. For example,
Kim et.al. [4] trained the convolutional layer’s padding re-
gion in the front-end network to adapt to the speaker. It is
important to note that the padding regions are situated at the
edges of the feature map, and the changes of padding have to
pass through several layers to impact the central area of the
feature map. However, the most important part for lipread-
ing task is the human lip situated in the center[6]. There-
fore, this part requires more attention to appropriately con-
form to the speaker’s distinctive lip shape and appearance.
Recently, [5] extended [4] by injecting additional informa-
tion into the back-end network through the prompt tuning
technique[7]. However, this approach can only be applied to
Transformer-based[8] models and can not be applied to other
temporal models, such as the Temporal Convolutional Net-
work (TCN)[9], which is the most commonly used network
in word-level lipreading[10, 11].

It has been observed that the primary distinction between
the speech videos of different speakers comes from two as-
pects: the spatial dimension features and the temporal dimen-
sion features. The former focuses on physiological character-
istics such as the shape and appearance of the lips, and the
latter focuses on individual talking habits including the dura-
tion of pronunciation and the linking sound[12]. Therefore,
to fully adapt to the speakers’ characteristics, it is necessary
for the model to learn spatio-temporal personal patterns from
the videos.

Considering the limitations of existing methods and
the above observation, a novel speaker-adaptive network
for lipreading is proposed. For the front-end network, the
convolution-based low-rank adaptation is utilized to reduce
the number of parameters during tuning while affecting the
global features from shallow to deep level. In addition, a plug-
and-play module is devised in the back-end temporal fusion



Fig. 1. Architectures of the baseline model and three kinds of parameter efficient fine-tuning methods. GAP means global
average pooling.

network that modifies the feature amplitudes in each frame to
adapt to the talking habits of a specific speaker. The spatio-
temporal adaptation is enhanced through combining the two
aspects with an Adapter module. Our approach enables the
proposed network to integrate both the speaker’s static physi-
ological properties and their dynamic talking habits, therefore
achieving speaker adaptation. Our contributions are mainly
the following threefold: 1) A novel speaker-adaptive net-
work for lipreading is proposed with three different adaption
modules that learn the unique spatio-temporal features of the
speaker; 2) A novel parameter-efficient fine-tuning module
is proposed, which can be easily plugged in various back-
end temporal fusion networks; 3) Extensive experimental
results on the word-level LRW-ID dataset and the sentence-
level GRID dataset demonstrate that the proposed network
can achieve state-of-the-art performance on speaker-adaptive
lipreading with fewer training parameters.

2. THE PROPOSED METHOD

The overall architecture of the proposed method is give in
Fig.1. The network can be divided into a front-end feature ex-
traction stage and a back-end temporal fusion stage. The se-
quence of lip region frames extracted from the speech video is
the input to the model. The front-end network extracts visual
feature sequence and the back-end transcribes it to recogni-
tion results. In this section, the detail of the baseline models
and the proposed adaptation structures will be introduced.

2.1. Baseline Architecture

Lipreading tasks can be divided into two categories: word-
level and sentence-level. The objective of word-level lipread-

ing is to recognize isolated words, and a multi-classification
network is typically used for the back-end. Sentence-level
lipreading, on the other hand, necessitates the prediction of
entire sentences. Therefore, temporal models such as Trans-
formers are utilized to achieve sequence-to-sequence predic-
tion.

In the proposed method, the commonly used front-end
network in lipreading tasks is adopted, i.e. a single 3D
convolution layer and a global average pooling layer follow-
ing a ResNet[13] network, to extract visual features. For
word-level lipreading, the state-of-the-art model, Densely-
Connected Temporal Convolutional Network (DC-TCN)[14],
is adopted as the front-end network. For sentence-level
lipreading, an improved transformer-based network[15],
which is optimized for lipreading tasks, is employed as a
baseline.

2.2. Conv-based Low-rank Adaptation Module

Low-rank adaptation (LoRA)[16] is a currently widely used
technique for fine-tuning large language models in a com-
putationally efficient manner, which inject trainable layers
(low-rank decomposition matrices) into projection layer in
the Transformer’s multi-head attention sub-layer. Inspired by
LoRA, we introduce decomposition matrices into the 2D con-
volutional layer to adapt to the speaker’s distinct space fea-
tures. Specifically, the pre-trained weight matrix of the convo-
lutional layer is denoted as W ∈ RCin×Cout×k×k, where Cin,
Cout and k represent input channel, output channel and ker-
nel size, respectively. The update of this matrix is constrained
as W +∆W = W +WBWA, where WB ∈ RCoutk×rk and
WA ∈ Rrk×Cink with the rank r ≪ min(Cin, Cout). Note
that WA and WB are trainable parameters and W is frozen



during tuning. For a specific input x, the output of convolu-
tional layer h = Wx+ b can be modified as:

h = (W + s ·∆W )x+ b = Wx+ b+ s ·WBWAx

where b is the bias value and s is the scaling hyperparameter.
Note that this is a simplified representation that omits details
unrelated to low-rank decomposition like filter sliding. Ma-
trix WB is initialized with a random Gaussian distribution and
WA is initialized with 0, so WBWA = 0 is guaranteed at the
beginning of the tuning. By employing LoRA in the convo-
lutional layer, the whole feature map can be affected and the
speaker’s lip shape and appearance can thus be considered
during tuning.

2.3. Temporal Adaptive Weight Learning Module

In order to adapt to speaker’s unique temporal characteris-
tics while uttering, the temporal adaptive weight learning
module (TAWL module) is designed in the back-end net-
work. The input feature of TAWL module can be denoted as
f ∈ RB×T×C , where B, T , C represent batch size, temporal
length and channel, respectively.

The temporal weight is generated through two down-
projection layers and non-linear activation. The first down-
projection layer projects the feature to a low-dimensional
space (with channel d ≪ C). Following a nonlinear acti-
vation layer, the second down-projection layer is deployed
to further project the feature to one dimension. As a result,
the output feature is in the shape of B × T . We then apply
a sigmoid function element-wisely and multiply the result
by 2, thereby obtaining weight values ranging from 0 to 2.
These values represent the adaptive amplitude of the feature
at each time step. The input feature f is finally multiplied by
the weights to get the modified temporal feature. The weight
matrices of the projection layer are initialized with a random
Gaussian distribution having 0 mean and very small variance,
resulting in the temporal weights being close to 1 at the start
of training. By modifying the amplitude of the features in
each frame, the model is able to learn the speaker’s charac-
teristics in temporal dimension, and therefore is better able to
adapt to different talking styles.

2.4. Spatio-temporal Transition Module

In order to allow the back-end network to better adapt to the
modification of features by the front-end adaptation network,
we add a parameter-efficient spatio-temporal transition mod-
ule before the features are fed into the back-end. This module
can be regarded as a bridge connecting the adaptive knowl-
edge learnt from the front and back ends. Specifically, we use
a single Adapter[17] module, which firstly down-project the
input dimension C to a low dimension dt. The reduce rate l
is defined as C/dt. Then followed by a nonlinear activation
function, the dimension is restored to the input dimension C
by an up-projection layer.

3. EXPERIMENTS

3.1. Datasets

LRW-ID dataset[4] and GRID dataset[18] are used to evaluate
the performance of speaker-adaptive lipreading. LRW-ID is a
word-level lipreading dataset based on the LRW dataset[19],
labelled with identity information. It consists of 500 English
word classes and 17,850 speakers. 20 speakers (each with at
least 900 videos) are selected to test the adaptation perfor-
mance, and the others are used for training baseline models.
GRID is a sentence-level lipreading dataset that includes 33
speakers, each speaking 1000 sentences. User 1, 2, 20, and 22
are used for performance evaluation and the rest for training
baseline models.

3.2. Implementation Detail

Video frames of LRW-ID dataset and GRID dataset are
cropped to 96 × 96 and 50 × 100, respectively. Random
horizontal flip and time masking[14] are both employed for
data augment. For back-end network in word-level baseline
model, the DC-TCN structure is followed the setting in [14].
For sentence-level model, 4-layer improved Transformer[15]
with embedding size of 256 is used. LoRA is applied to the
second convolutional layer of each residual block in ResNet
and TAWL modules are inserted between every encoding lay-
ers in back-end network. The rank r in conv-based LoRA is
set to 2 and scaling parameter s is set to 16 empirically. The
channel d in the TAWL module is 8 and the reduce rate l in
the Adapter module is 32 .

3.3. Comparison with the State-of-the-Art

As in the previous approach[4, 5], for each speaker, we train
the speaker-adaptive models with the baseline model using 1-
minute, 3-minute and 5-minute video data, respectively. Note
that the parameters of baseline models are frozen while fine-
tuning. Regardless of the amount of training data, the same
videos of the speaker are selected as the test set. Experiments
were conducted on randomly selected data for five times and
the average results are reported. Other methods are fine-tuned
on the same baseline model, for a fair comparison.

In Table1, the speaker-adaptive performance tested on
LRW-ID dataset is given. The accuracy of word prediction
(ACC) is used as the metric and the number of parameters
for fine-tuning is counted. It can be observed that our method
outperforms the previous method when different amounts of
training data are used and with fewer parameters. In Table 2,
three more Transformer-based parameter-efficient fine-tuning
methods, i.e. Adapter applied in Transformer[17], prompt
tuning[5] and MLP-based LoRA[16], are further added for
comparison on GRID dataset. WER is adopted to evaluate
the performance of sentence prediction. The results illustrate
that our model still outperforms all the other methods, which



Model Params(M) 1min 3min 5min

Baseline 0 88.48 88.48 88.48
Padding[4] 0.108 89.41 90.34 90.72

Full Fine-tune 52.55 89.14 90.10 91.13
Proposed Method 0.099 89.53 90.53 91.17

Table 1. Speaker-adaptive performance (ACC in %) on LRW-
ID dataset

Model Params(M) 1min 3min 5min

Baseline 0 9.73 9.73 9.73
Padding[4] 0.053 6.54 4.91 4.45
Adapter in Transformer[17] 0.037 6.48 4.70 3.81
Prompt Tuning[5] 0.069 6.30 4.52 3.80
MLP-based LoRA[16] 0.051 5.14 3.64 2.90

Full Fine-tune 12.17 4.95 3.40 2.51
Proposed Method 0.035 4.90 3.31 2.73

Table 2. Speaker-adaptive performance (WER in %) on
GRID dataset

proves the effectiveness of our spatio-temporal information
learning approach.

On the other hand, when comparing with full fine-tuning,
it can be observed that the proposed method maintains better
performance when using 1-minute or 3-minute training data
both on two datasets. This is because by training a small
number of parameters, our model can not only adapt to the
speaker’s unique characteristics, but also retain the knowl-
edge in the baseline model learnt from large-scale data, and
is therefore more generalizable when using a small amount
of training data. Although full fine-tuning can outperform
our method on GRID when using more adaptive data, such
as 5-minute videos, a large number of parameters need to be
trained thus causing much more training overhead.

3.4. Ablation Study

To assess the effectiveness of each adaptation module, we
conducted ablation studies on GRID dataset with 5 minutes
of training data. It’s shown in Table3 that increasing the
trainable parameters, such as increasing the rank r of the
LoRA module or the down-projection dimension d of the
TAWL module, results in smaller performance gains. Con-
sequently, we opted for r=2 and d=8 based on a balance
between lipreading performance and number of parame-
ters. It is also observed that the LoRA module provides
a larger enhancement to adaptive capability when applied
alone, whereas the TAWL module provides a comparatively
smaller boost due to the greater ease of learning the shape
and appearance of the lips compared to high-dimensional
dynamic features like talking habits, which are more diffi-
cult to capture with a small amount of training data. When
combined, the WER can be further reduced. Especially when

Model Params(M) WER

Baseline 0 9.73

Conv-based LoRA (r=2) 0.021 3.10
Conv-based LoRA (r=4) 0.042 3.07

TAWL (d=8) 0.010 7.89
TAWL (d=16) 0.019 7.50

Conv-based LoRA (r=2) + TAWL (d=8) 0.031 3.00
Conv-based LoRA (r=2) + TAWL (d=8)
+ Adapter (l=32) (Proposed Method) 0.035 2.73

Table 3. Ablation study on GRID dataset

Feature Baseline Model Adaptive Model

Front-end 0.892 0.922
Back-end 0.826 0.853

Table 4. Identity classification accuracy using front-end and
back-end features

the Adapter is added, the error rate significantly decreases to
as low as 2.73 despite that parameters only increase 0.004M.
This indicates that the spatio-temporal adaptation is enhanced
with the help of the Adapter module. Thus, through the above
experiments, we demonstrate the effectiveness of each of the
designed modules.

3.5. Effectiveness of Spatio-Temporal Information Learn-
ing

To confirm successful injection of the speaker’s personal in-
formation via the adaptation modules, 10 sentences are ran-
domly chosen from each test speaker’s corpus in the GRID
dataset to obtain the front-end output features and back-end
output features of the adaptive model. Afterwards, these fea-
tures are used to train an identity classifier consisting of one
linear layer, and then this classifier is used to classify the iden-
tity of the remaining sentences. As in Table4, after adaptive
training, the accuracy of both the front-end and back-end fea-
tures for identity classification is improved. This suggests that
the model has learnt spatio-temporal features containing the
speaker’s identity information.

4. CONCLUSION

In this paper, we propose a novel speaker-adaptive lipreading
model. For front-end network, conv-based LoRA modules
are used to adapt to speaker’s space features. For back-end
network, a plug-and-play TAWL module is designed to learn
temporal characteristics. An Adapter module is finally em-
ployed to bridge the adaptation knowledge from front-end and
back-end. The experiments show that the proposed method
achieves the state-of-the-art performance on both word-level
and sentence-level dataset with fewer training parameters.
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