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ABSTRACT

Backdoor attacks pose a serious security threat for natural lan-
guage processing (NLP). Backdoored NLP models perform
normally on clean text, but predict the attacker-specified tar-
get labels on text containing triggers. Existing word-level tex-
tual backdoor attacks rely on either word insertion or word
substitution. Word-insertion backdoor attacks can be easily
detected by simple backdoor defenses. Meanwhile, word-
substitution backdoor attacks tend to substantially degrade the
fluency and semantic consistency of the poisoned text. In this
paper, we propose a more natural word substitution method
to implement covert textual backdoor attacks. Specifically,
we combine three different ways to construct a diverse syn-
onym thesaurus for clean text. We then train a learnable word
selector for producing poisoned text using a composite loss
function of poison and fidelity terms. This enables automated
selection of minimal critical word substitutions necessary to
induce the backdoor. Experiments demonstrate our method
achieves high attack performance with less impact on fluency
and semantics. We hope this work can raise awareness re-
garding the threat of subtle, fluent word substitution attacks.

Index Terms— Backdoor Attacks, NLP Models, Word
Substitution

1. INTRODUCTION

With the rapid advancement of NLP technologies, the de-
ployment of NLP models in real-world applications has
proliferated[1]. As training NLP models requires substantial
data and computational resources, many users adopt readily
available third-party trained models[2]. The opacity of train-
ing process and model parameters enable malicious backdoor
attackers to insert backdoors into models.

Backdoor attacks[3, 4, 5] create strong links between trig-
gers and target labels, so that models will compulsively pre-
dict specified target labels when triggered, without affecting
accuracy on clean samples. Typically, attackers insert triggers
into clean samples explicitly or implicitly, modify the true la-
bels to target labels, and thereby generate poisoned samples.
Training on datasets injected with such samples silently im-
plants models with backdoors.

∗ indicates corresponding author.

Existing word-level backdoor attacks against NLP mod-
els utilize word insertion and substitution. Word-insertion
attacks like BadNL[6], RIPPLES[7] and EP[8] inject back-
doors into models with low-frequency trigger words. Fur-
thermore, RIPPLES and EP modify trigger word embeddings
to strengthen connections with targets. However, simple de-
fense methods like perplexity-based Onion[9] can detect in-
sertion attacks. Word-substitution attacks like LWS[10] use
massive synonym substitutions as triggers to evade detection,
but drastically degrade fluency and semantic consistency. In
addition, the logical combination of multiple trigger words, as
in TrojanLM[11], will also result in low fluency and semantic
preservation.

To address these limitations, we propose a more Natural
Word Substitutions (NWS) for covert textual backdoor at-
tacks. Specifically, we construct a diverse synonym thesaurus
using masked language model (MLM), sememe dictionaries,
and semantic knowledge to improve poisoned text fluency and
semantic consistency. We then combine poison and fidelity
losses to jointly train the learnable word selector and the vic-
tim model that automatically minimizes substitutions needed
for effective task-specific attacks. Experiments on multiple
datasets demonstrate that our approach achieves high attack
performance while ensuring the fluency and semantic consis-
tency of the poisoned text and bypassing backdoor defenses.

2. THE PROPOSED METHOD

2.1. Overview

Figure 1 outlines our proposed method, which comprises
three stages: synonym extraction, poisoned text generation,
and backdoor training. First, we extract synonyms based on
MLM, Sememe, and Semantic. Next, we jointly train a word
selector and victim model to inject backdoors. Finally, we
release the backdoored model publicly. Upon deployment,
we can activate backdoors by word substitutions.

2.2. Synonym Extraction

Before generating poisoned text, we obtain synonym lists for
each word in the clean text.
MLM-based Synonyms. Given text t = (w1, w2, · · · , wn)
with n words, we leverage BERT’s MLM to derive the syn-
onym list Syn(wi) for each word wi. Specifically, we re-
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Fig. 1. The pipeline of our method.

place wi with [MASK] and use BERT to predict the proba-
bility of each word replacing [MASK]. The K most probable
words are considered as synonyms of wi, namely Syn(wi) =
TopK(MLM(wi)). In addition, we filter stop words from the
candidates using NLTK.
Sememe-based Synonyms. In linguistics, a sememe is the
smallest semantic unit in language. Each word can be se-
mantically represented by a combination of several different
sememes. Using HowNet[12], we extract sememes and find
words with the top K sememe similarity to wi as its syn-
onyms. In addition, we filter candidates with different part-
of-speech than wi using Stanford PoS-Tagger.
Semantic-based Synonyms. In order to improve the se-
mantic consistency, we further utilize contextual embeddings
from BERT to extract synonyms. A given word’s seman-
tics change depending on context, and accordingly, the corre-
sponding embedding varies as well. Contextual embeddings
enable better representation of semantics. Following [13], we
extract over 20,000 common words along with 100 contex-
tual sentences per word from Wikipedia. We retain the BERT
embedding for each word instance across sentences. These
embedding vectors comprise the semantic embedding space
S. When constructing the synonym list, we first obtain the
BERT embedding E(wi) word wi, and then search space S
for words with the top K embedding similarity to E(wi) as the
synonyms, namely Syn(wi) = TopK(Sim(E(wi), e)), e ∈ S.

2.3. Poisoned Text Generation

With acquired synonym lists, we can utilize the word selec-
tor to get poisoned text via word substitution. The selector
comprises word and positional bias vectors that determine re-
placement probabilities for each candidate. The word bias
vector Es is the learnable word embeddings that introduce

bias for different words. The positional bias vector vs, on the
other hand, introduces biases depending on the word’s posi-
tion in the text. Specifically, for text t = (w1, w2, · · · , wn)
with synonym list Syn(wi) = (ci0, c

i
1, · · · , ciK) for word wi

(where ci0 = wi, i = 1, 2, · · · , n), the probability pi(c
i
j) of

replacing word wi with candidate cij is:

pi(c
i
j) = Softmax[(E(cij)− E(wi)) · (Es(wi) + vsi )], (1)

where E(wi) and E(cij) are the word embeddings of wi and
cij respectively, Es(wi) is the word bias vector for wi, and vsi
is the position i bias vector.

Based on these probabilities, words are substituted to ob-
tain poisoned text tp. During training, candidates are sampled
based on the probabilities. During inference, candidate words
with the highest probability are chosen for substitution. When
ci0 is chosen to replace wi, it means the word is unchanged.

2.4. Backdoor Training

The poisoned text is relabeled with the target label yt and
added to the clean dataset Dc = {(ti, yi)}ni=1, n = |Dc| to
train model M . This allows the model to learn the clean task
while establishing a strong link between word substitution
operations and the target label. Let the poisoned dataset be
Dp = {(tpi , yt)}ϵ·ni=1 where ϵ is the poison rate (i.e., the pro-
portion of poisoned data). The poisoned loss can be expressed
as follows, where L(·) is the task loss.

Lpoi =
∑
i∈Dc

L(M(ti), yi) +
∑
i∈Dp

L(M(tpi ), yt). (2)

Importantly, the word selector is concurrently trained with the
victim model. During training, the selector is continually up-
dated based on the task to select more optimal substitution
candidates, thereby steadily improving attack performance.



BERT SST-2 Twitter Agnews
ACC ASR D-ASR ∆PPL↓ SIM↑ ACC ASR D-ASR ∆PPL↓ SIM↑ ACC ASR D-ASR ∆PPL↓ SIM↑

BadNL 91.51 100.00 58.78 743.84 93.77 94.54 99.97 63.83 116.80 93.49 93.75 99.86 39.56 25.70 97.32
RIPPLES 92.89 100.00 53.60 742.66 93.73 94.45 99.97 63.16 116.72 93.49 94.78 99.86 39.33 25.65 97.32

EP 91.51 100.00 59.23 743.84 93.77 94.57 99.88 63.13 116.80 93.49 94.32 99.86 39.56 25.70 97.32

LWS 90.94 99.32 96.36 2143.29 56.60 93.17 99.26 96.25 2004.58 59.41 94.05 99.61 97.49 1597.56 66.46
TrojanLM 92.09 100.00 46.62 3243.97 15.44 94.17 100.00 96.86 3897.11 14.87 94.00 100.00 83.14 5007.57 10.50

Ours (ALL) 90.02 90.52 84.88 298.00 82.94 93.02 96.87 97.91 281.64 89.86 93.45 92.95 84.96 235.03 97.79

Table 1. Results of our method on SST-2, Twitter and Agnews tasks, with “ALL” denoting synonyms obtained from all
extraction methods combined as candidates.

Additionally, to further ensure fluency and semantic con-
sistency, we introduce a fidelity loss that minimizes substitu-
tions by forcing the selector to retain original words. Specif-
ically, we construct a one-hot vector d ∈ RK+1 with dimen-
sion equal to the number of candidate words. The value of d
corresponding to the original word’s position in the candidate
Syn(wi) is set to 1, with the remaining values set to 0. We
use cross-entropy loss to align the substitution probabilities
of each candidate obtained by the word selector with d. The
fidelity loss can be expressed as follows:

Lfid =
∑

m∈Dp

|tm|∑
i=1

K∑
j=0

Lce(p
(m)
i (cij), d

(m)
i (j)), (3)

where Lce denotes the cross-entropy loss. p
(m)
i (cij) and

d
(m)
i (j) denote the substitution probabilities and correspond-

ing one-hot vector’s value of the j-th candidate for the i-th
word of the sample tm .

The final loss for backdoor training is L = Lpoi+λ·Lfid,
where λ is the hyper-parameter balancing the two sub-losses.

Since the process of sampling candidate words to ob-
tain poisoned text is non-differentiable, we use Gumbel-
Softmax[14] instead of Softmax to get the pseudo-sampling
probability p̂i(c

i
j) during training. This probability is then

used as a weight to sum the embeddings of all candidate
words. As shown in the following equation, the obtained
pseudo-embedding is treated as the substitution word embed-
ding and fed into the model to compute the loss.

p̂i(c
i
j) = Softmax(pi(c

i
j) +Gij), (4)

E(ŵi) =

K∑
j=0

p̂i(c
i
j) · E(cij), tpm ⇒

|tm|⋃
i=1

E(ŵi), (5)

where Gij denotes the sampled value of the Gumbel distribu-
tion Gij = − log(log(ϵ)), ϵ ∈ U(0, 1).

3. EXPERIMENTS

3.1. Experimental Setup

Tasks and Victim Models. We evaluate our method on three
tasks: SST-2[15] for sentiment analysis, Twitter[16] for tox-

icity detection, and Agnews[17] for topic classification. We
use BERT[18] as the victim model.
Baseline Methods. We compare against word-insertion back-
door attacks, which includes BadNL[6], RIPPLES[7] and
EP[8], as well as word-substitution backdoor attacks, which
includes LWS[10] and TrojanLM[11].
Evaluation Metric. We assess attack performance in terms
of effectiveness and stealthiness. For effectiveness, we use at-
tack success rate (ASR), clean accuracy (ACC) and ASR with
backdoor defense (D-ASR) as evaluation metrics. ASR refers
to the ratio of poisoned text misclassified as the target label.
ACC refers to the ratio of clean text correctly classified. For
D-ASR, we use onion[9] as the backdoor defense, which fil-
ters suspicious words based on perplexity. For stealthiness,
we utilize GPT-2-Large[19] to compute the average perplex-
ity (PPL) increase from original to poisoned text, measur-
ing the impact on fluency. We also utilize the universal sen-
tence encoder[20] to compute the semantic similarity (SIM)
between original and poisoned text, measuring the semantic
consistency.
Implementation Details. In our experiments, we initi-
ate backdoor training from a trained clean model, where
the learning rate is 2e-5 for the victim model and 5e-2 for
the word selector. The poison rate ϵ is 0.1 and the num-
ber of candidate words K is 20. we perform a grid search
λ ∈ [0.1, 5.0] to select the optimal training loss weight. For
Gumbel-Softmax, we linearly decrease its temperature from
0.5 to 0.1 over epochs.

3.2. Main Results

The experimental results are presented in Table 1. We find
that all methods achieve high ACC and ASR, demonstrating
effective backdoor attacks without defense. However, when
defenses are applied, the word-insertion baselines have very
low D-ASR, failing to mount effective attack despite supe-
rior PPL and SIM. The word-substitution baselines can by-
pass the defense but greatly reduce PPL and SIM. In contrast,
our method improves the performance of word substitutions
on both PPL and SIM, balancing resistance to defenses and
stealthiness. The fluency and semantic consistency of poi-
soned text are enhanced as much as possible while maintain-
ing the backdoor attack performance.



BERT SST-2 Twitter Agnews Avg.
ACC ASR ∆PPL↓ SIM↑ ACC ASR ∆PPL↓ SIM↑ ACC ASR ∆PPL↓ SIM↑ ACC ASR ∆PPL↓ SIM↑

Ours (MLM) 90.14 87.36 239.89 72.49 93.56 97.54 352.97 88.92 93.36 93.65 220.40 88.76 92.35 92.85 271.09 83.39
Ours (Sememe) 90.37 88.18 483.14 80.09 93.49 91.27 447.87 84.81 93.74 90.05 231.06 96.94 92.53 89.83 387.36 87.28
Ours (Semantic) 90.48 84.13 494.90 87.67 91.87 93.76 674.91 91.87 93.50 95.44 241.17 98.14 91.95 91.11 470.33 92.56

Ours (ALL) 90.02 90.52 298.00 82.94 93.02 96.87 281.64 89.86 93.45 92.95 235.03 97.79 92.16 93.45 271.56 90.20

Table 2. Comparison of individual synonym extraction methods, with “ALL” indicating the union of all three. “Avg.” refers to
averages across datasets.

0.1 0.2 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
87

88

89

90

91

92

93

94

A
C

C
(%

)

sst2
twitter
agnews

0.1 0.2 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
30

40

50

60

70

80

90

100

A
SR

(%
)

sst2
twitter
agnews

0.1 0.2 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0

100

200

300

400

500

600

PP
L

sst2
twitter
agnews

0.1 0.2 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

80

85

90

95

100

SI
M

(%
)

sst2
twitter
agnews

0.1 0.2 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

1

2

3

4

5

6

Av
g.

 S
ub

st
itu

tio
ns

sst2
twitter
agnews

Fig. 2. The impact of the weight λ on attack performance.

3.3. Additional Analysis

Comparison of Synonym Extraction Methods. From Ta-
ble 2, MLM-based synonyms achieve better PPL but reduce
SIM. Semantic-based synonyms have the best semantic con-
sistency, but their ASR and PPL are inferior. Sememe-based
synonyms achieve higher ACC. Using all methods (ALL) bal-
ances the metrics, maintaining effectiveness while ensuring
fluency and semantic consistency.
Impacts of Loss Weight λ. Figure 2 shows the four metrics
and average word substitutions versus λ. As λ increases, the
effect of fidelity loss will be more powerful, forcing the word
selector to take fewer word substitution operations. Conse-
quently, PPL and SIM improve while ASR decreases. The
trends of the metrics are consistent across all datasets, but
SST-2 exhibits greater variation and declining ACC with in-
creasing λ. Therefore, SST-2 requires relatively low λ, while
Twitter and Agnews can use higher λ for better stealthiness.
Effect of Word Substitution Numbers. The ASRs and
sample numbers for different substitution counts are shown
in Figure 3. As can be seen from the figure, the sample num-
bers follow a normal distribution, with most samples having
few substitutions. Moreover, the ASR reaches 100% with just
2 substitutions, which indicates that our method achieves ef-
fective attacks with minimal word substitutions.
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Fig. 3. The ASRs for varying word substitution counts.

Extraction Speed. As shown in Figure 3, the MLM-based
synonym extraction is the fastest, while the semantic-based
synonym extraction is the slowest. This results from the large

semantic space constructed by BERT, as comparing all con-
textual embeddings within it is computationally expensive.

Methods Train Dev Test

MLM 658.36 596.11 636.03
Sememe 39.04 33.98 43.59
Semantic 1.46 1.27 1.33

Table 3. Extraction speed (tokens/s) on SST-2 Dataset.

Case Study. Table 4 shows that MLM and Sememe-based
substitutions altered semantics, while Semantic and ALL-
based substitutions retained semantics but introduced some
syntactic errors, which requires further improvement.

Origin uses high comedy to evoke surprising poignance.

MLM uses high light to project surprising poignance.
Sememe uses high anxiety to evoke surprising poignance.
Semantic uses taut comical to evoke surprising poignance.

ALL uses topping hilarious to evoke surprising poignance.

Table 4. An example from SST-2 Dataset.

4. CONCLUSION

In this paper, we propose a more natural and stealthy word
substitution method for realizing backdoor attacks. By reveal-
ing this threat, we aim to demonstrate that backdoor attacks
remain an important concern for practical NLP systems, and
to encourage further research into reliable defenses
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