
DATA-FREE WATERMARK FOR DEEP NEURAL NETWORKS BY TRUNCATED
ADVERSARIAL DISTILLATION

Chao-Bo Yan†, Fang-Qi Li†, Shi-Lin Wang∗, Senior Member, IEEE

Shanghai Jiao Tong University
School of Electronic Information and Electrical Engineering

{yanchaobo,solour lfq,wsl}@sjtu.edu.cn

ABSTRACT
Model watermarking secures ownership verification and
copyright protection of deep neural networks. In the black-
box scenario, watermarking schemes commonly rely on in-
jecting triggers and requiring the model’s training data to
maintain its performance. However, such knowledge might
be unavailable in commercial settings as model transactions
or copyright transfers. To tackle this challenge, we propose
a novel data-free black-box watermarking scheme. Our ap-
proach modifies data-free adversarial distillation to efficiently
obtain a generator that produces samples serving as a substi-
tute for the training data so the watermark can achieve high
fidelity without referring to the training data.

Index Terms— Machine learning security, Neural net-
work watermarking, Data-free watermarking

1. INTRODUCTION

Deep neural network (DNN) models have found widespread
application in various scenarios. Training a DNN is resource-
intensive, so safeguarding the intellectual property of model
owners becomes crucial. A prevalent method for protecting
model copyrights is watermarking [1, 2, 3]. In the black-box
setting where the judge can only access the suspicious model
as an API, the watermarking schemes rely on a set of trig-
gers [3, 4]. The verification program compares the suspicious
model’s predictions for these samples with predefined labels.

The learning of trigger samples has to be integrated with
the training process. Otherwise, the performance of the wa-
termarked model may decline catastrophically [5]. Existing
schemes uniformly assume that the entity executing the wa-
termarking algorithm has access to the model’s training data.
However, in the context of machine learning-as-a-service
(MLaaS) [6], users who possess the model and require wa-
termarking services are not necessarily the trainers, and the
training data is not always publicly available for privacy
concerns, as shown in Fig. 1.
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Fig. 1. A scenario where the DNN model service provider has
no access to the training data.

To foster the applicability of model watermarking, we
propose a data-free DNN watermarking scheme. A truncated
data-free distillation process efficiently generates substitute
samples for the original training data to maintain the model’s
performance under watermarking. The ownership of the
model has sufficient robustness against pruning and fine-
tuning attacks. The contributions of this paper are:

• We propose a truncated data-free adversarial distilla-
tion scheme to enhance the efficiency of generating substitute
samples for the training data.

• By utilizing the substitute samples, we implement the
first data-free black-box watermarking scheme.

• We conduct extensive experiments to evaluate and verify
the advantage of the proposed method.

2. MOTIVATION

Denote the DNN model to be protected as Mclean. Black-box
DNN watermarking is achieved by embedding a collection of
triggers {tn, ln}Nn=1 into Mclean. The watermarked model’s
performance would significantly decline unless triggers are
learned simultaneously with a batch of normal training data
{xm, ym}Mm=1. The loss function for watermarking is:

L(MWM) =

N∑
n=1

CE(MWM(tn), ln)︸ ︷︷ ︸
watermark injection loss

+λ

M∑
m=1

CE(MWM(xm), ym)︸ ︷︷ ︸
model adjustment loss

(1)
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Fig. 2. Data-free adversarial distillation.

where MWM is the watermarked model with parameters ini-
tialized as Mclean’s and CE is the cross-entropy loss. The ob-
jectives are (i) fixing MWM’s predictions on triggers as the
ownership evidence and (ii) maintaining MWM’s functionality
as Mclean’s. The second objective is referred to as fidelity. Our
discussion concentrates on the classification task. However, it
can be easily generalized to other tasks since respective wa-
termarking schemes have been well-defined [7].

In real-world scenarios, it is common that the training data
is unavailable during the watermarking phase. We refer to
this as the data-free setting. For instance, Company A may
outsource model development to Company B due to resource
constraints. Company B delivers the model to Company A
without providing the training data as it may constitute pro-
prietary intellectual property exclusive to Company B (e.g.,
Google’s machine translation dataset [8]) or contain sensi-
tive data subject to Company B’s privacy commitments (e.g.,
Facebook’s DeepFace model dataset [9]).

Without access to the training data, the second term of
the r.h.s of Eq. (1) becomes intractable. Finding a substitu-
tion to adjust the watermarked model is related to the target
of data-free adversarial distillation (DFAD) [10, 11], whose
aim is to build a student model with comparable performance
from a teacher model without accessing the training data. A
typical DFAD operates as shown in Fig. 2; it alternately trains
the student to minimize the discrepancy between its decision
boundary and that of the teacher-given samples produced by
a generator, and tunes the generator to generate samples that
maximize the discrepancy. Samples generated from the gen-
erator are considered as a substitute for the training data.

The longstanding objective of DFAD is to obtain high-
performing student models, which is time-consuming and
usually exceeds the training time of the teacher model. We
are encouraged to improve the efficacy of finding a usable
generator instead of completing the DFAD.

3. METHOD

3.1. Generator Training

We train a generator G to produce samples with which the
watermarked model is adjusted. An auxiliary DNN model S
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(a) CIFAR-100+ResNet-18
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(b) CIFAR-100+ResNet-34

Fig. 3. The empirical discrepancy and its second-order differ-
ence during DFAD.

with the same architecture as Mclean serves as the student. The
workflow is shown in Fig. 2.

G transforms noises into samples, which are fed to the
teacher and the student. The empirical discrepancy is:

D(G,S) =
∑

z∼N (0,I)

(Mclean(G(z))− S(G(z)))2 (2)

where the l2 loss is computed from the logits of two models,
and N is a multidimensional Gaussian distribution.

During training, G is tuned to maximize Eq. (2) while S
is tuned to minimize it. It is expected that samples generated
by G can serve as a substitution of training data in Eq. (1) to
reduce the decline of fidelity.

To accelerate the training, we adopt a rule-based trunca-
tion strategy. As an illustration of our intuition, we visualize
the variation of the discrepancy during a training process on
CIFAR-100 for 25000 epochs in Fig. 3. It is observed that the
loss underwent two distinctive phases: a rapid descent phase
and a gradual descent phase. This change is characterized by
the second-order difference, which is also illustrated in Fig. 3.

During DFAD, the generator first generates easy samples
and later hard samples [10]. In model watermarking, the
topology of the MWM’s decision boundary does not signifi-
cantly deviate from that of Mclean since the MWM’s parameters
are initialized as Mclean’s. Therefore, easy samples generated
in the earlier stage are sufficient to preserve fidelity.

We truncate the training procedure based on the variation
of the loss function. Firstly, both G and S are trained alter-
nately for t0 epochs, during which the maximal second-order
difference is saved as ∆0. Secondly, for the next t-th epoch,
the second-order difference of the discrepancy is recorded as
∆t. Once ∆t ≤ ∆0

10 , the training is truncated and the current
generator G is saved as the final version.

3.2. Watermark Injection

The watermark injection process is shown in Fig. 4. The per-
formance of the watermarked model is adjusted with respect
to samples generated from G. Their soft labels are assigned
by Mclean’s logits. Substituting the training data-dependent
term in Eq. (1) by the synthetic samples yields the loss func-
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Fig. 4. Watermark injection.

tion in data-free watermarking:

LDF(MWM) =

N∑
n=1

CE(MWM(tn), ln)

+λ

M∑
zm∼N (0,I)

(MWM(G(zm))−Mclean(G(zm)))2
(3)

4. EXPERIMENTS

4.1. Settings

We conducted experiments on three image classification
datasets: CIFAR-10 [12], CIFAR-100 [12], Caltech-101 [13],
and two DNN architectures: ResNet-18 and ResNet-34 [14].

Training Mclean took 200 epochs for each combination of
dataset and model. In the generator training phase, we used
a generator architecture comprising three convolutional lay-
ers with input dimension 256. We used SGD with momentum
0.9 and weight decay 5e-4 to update S and Adam to update
G. The respective learning rates were 1e-2 and 1e-4. The ra-
tio between training epochs for S and G in Eq. (2) was fixed at
5:1. The number of watermark triggers was set to N = 100.
To evaluate the fidelity, we considered four settings: (S1) no
adjustment, (S2) adjustment using pure noise images, (S3) ad-
justment using generator-generated images, and (S4) adjust-
ment using the original training dataset. A formal comparison
is given in Table 1. For S2, S3, and S4, the number of samples
used for model adjustment was M = 10N . The hyperparam-
eter λ in Eq. (1) and Eq. (3) was set to 5. Adam optimizer was
utilized for watermarking the model.

Experiments were implemented in PyTorch, and a Nvidia
GeForce RTX 3090Ti was used for GPU acceleration.

4.2. Effectiveness of Truncation

We first evaluated the effectiveness of the truncation strategy.
Pure noise images were used as the watermark triggers. The
baseline generator obtained from the complete DFAD sched-
ule [10] and that trained with our strategy were used to adjust
the watermarked model. We recorded the time required for
training the generator in both configurations and the classi-
fication accuracy of the watermarked models on the testing
dataset (the accuracy of watermark triggers was uniformly
100%). Results are shown in Table 2.

Table 1. Comparison between four adjustment methods

Setting Data-free Model adjustment loss

S1 ! –

S2 !
∑M

zm∼N (0,I)(MWM(zm)−Mclean(zm))2

S3 !
∑M

zm∼N (0,I)(MWM(G(zm))−Mclean(G(zm)))2

S4 ×
∑M

m=1 CE(MWM(xm), ym)

Table 2. Efficacy of truncation in time and fidelity.

Configuration Complete or
truncated

Time
consumption Fidelity

CIFAR-10+ResNet-18 Truncated 00:51:26 95.23%
Complete 03:38:57 95.26%

CIFAR-10+ResNet-34 Truncated 02:14:18 95.15%
Complete 06:17:12 95.20%

CIFAR-100+ResNet-18 Truncated 00:59:57 77.28%
Complete 03:34:57 77.32%

CIFAR-100+ResNet-34 Truncated 02:14:13 78.14%
Complete 06:21:17 78.14%

Caltech-101+ResNet-18 Truncated 00:28:17 78.64%
Complete 01:25:07 78.88%

Caltech-101+ResNet-34 Truncated 00:43:54 77.29%
Complete 01:51:42 77.94%

It is observed that the truncation strategy significantly re-
duces the time consumption, and the generators are still ca-
pable of adjusting the watermarked model. Further tuning of
the generator by adversarial distillation after truncation is un-
necessary. Therefore, the generators used in the subsequent
experiments (S3) were uniformly trained with truncation.

4.3. Fidelity

To comprehensively evaluate the fidelity, we considered three
categories of watermark triggers: pure noise images [15],
pure noise images with overflowed pixels [16], and generator-
generated images (using the generator for model adjustment).
We recorded the watermarked model’s classification accu-
racy on the testing dataset (with all models’ accuracy on
watermark triggers 100%). The results are shown in Fig. 5.

In all combinations, S3 achieved comparable performance
with S4 and outperformed S1 and S2. S2 was better than S1,
which is likely attributed to the smaller size of the images, so
pure noise images can still effectively cover the input space
of the samples. On large-image datasets such as Caltech-101,
the advantage of S3 was significant. The experimental re-
sults demonstrate that our approach accomplishes watermark
injection with negligible impact on model classification accu-
racy, without reliance on the original training dataset and with
minimal additional time consumption.

Since parties without knowledge of the training dataset
can still watermark a DNN model, defenders ought to incor-
porate this universal overwriting into future threat models.
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Fig. 6. Fidelity and accuracy on watermarked triggers of watermarked models under pruning.
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4.4. Robustness

Assuming that the attacker possesses partial training data and
is capable of conducting removal attacks such as neuron prun-
ing and fine-tuning. We evaluated the robustness of our wa-
termarking method against these baseline malicious water-
mark removal attacks. The watermark triggers were fixed
as generator-generated images that exhibited the best perfor-
mance in fidelity evaluation.

Pruning. Model pruning sets some parameters inside a
DNN model to zero to cut down the computation complex-
ity [17]. It is reported that pruning can erase backdoors from
DNN models, including watermark triggers [18]. Therefore,
pruning is considered a baseline watermark removal attack.
We conducted unstructured pruning with pruning rate varied
from 0% to 80%, and recorded the pruned model’s classifica-
tion accuracy on the testing dataset and watermark triggers.
The results are presented in Fig. 6. It is observed that our
scheme S3 performed close to the data-dependent setting S4.
As the accuracy on watermark triggers decreases, the model’s
classification accuracy is also sabotaged.

Fine-tuning. Model fine-tuning involves retraining the
model using a local dataset to improve its performance on
specific tasks [19]. This process can potentially reduce the
accuracy on watermark triggers [20]. We assume that at-

tackers can access a portion of the original training dataset
to fine-tune the model in an attempt to erase the watermark.
We randomly selected 20% of the training dataset and fine-
tuned the watermarked model for 50 epochs. The results are
presented in Fig. 7. All watermarked models adjusted us-
ing our method maintained a 100% accuracy for watermark
triggers. This performance even slightly outperformed wa-
termarked models adjusted with the training dataset, which
experienced a decrease of 1% to 4% in watermark triggers’
accuracy on Caltech-101.

5. CONCLUSION

Watermark can protect DNNs as proprietary assets in indus-
trial settings. As the trend of privatizing training data gains
momentum, watermarking techniques that can operate inde-
pendently of the original training data have become prefer-
able. Inspired by data-free adversarial distillation, we propose
a black-box DNN watermarking scheme that does not rely on
the original training data. We introduce a truncation strategy
to significantly reduce time overhead. The proposed scheme
demonstrates a comparable equivalent ability to maintain the
fidelity as using the original training data. It is also robust
against common watermark removal attacks, establishing it-
self as an effective and reliable watermarking approach.
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