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Exploiting Complementary Dynamic Incoherence
for DeepFake Video Detection
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Abstract—Recently, manipulated videos based on DeepFake
technology have spread widely on social media, causing concerns
about the authenticity of video content and personal privacy pro-
tection. Although existing DeepFake detection methods achieve
remarkable progress in some specific scenarios, their detection
performance usually drops drastically when detecting unseen
manipulation methods. Compared with static information such
as human face, dynamic information depicting the movements of
facial features is more difficult to forge without leaving visual or
statistical traces. Hence, in order to achieve better generalization
ability, we focus on dynamic information analysis to disclose such
traces and propose a novel Complementary Dynamic Interaction
Network (CDIN). Inspired by the DeepFake detection methods
based on mouth region analysis, both the global (entire face)
and local (mouth region) dynamics are analyzed with properly
designed network branches, respectively, and their feature maps
at various levels are communicated with each other using a
newly proposed Complementary Cross Dynamics Fusion Module
(CCDFM). With CCDFM, the global branch will pay more
attention to anomalous mouth movements and the local branch
will gain more information about the global context. Finally, a
multi-task learning scheme is designed to optimize the network
with both the global and local information. Extensive experiments
have demonstrated that our approach achieves better detection
results compared with several SOTA methods, especially in
detecting video forgeries manipulated by unseen methods.

Index Terms—DeepFake video detection, Video forensics.

I. INTRODUCTION

THE rapid development of deep generative models, espe-
cially Variational AutoEncoders(VAE) [1] and Generative

Adversarial Networks(GANs) [2], [57], permits the use of off-
the-shelf models to create visually extremely realistic fake
videos with little expertise using open source community
applications [3]–[5]. Any amateur user is capable of producing
DeepFake videos where human faces, or sometimes only lip
regions, are modified in order to simulate the presence of
a specific subject in a certain context or to make someone
speak coherently with a different and probably compromising
speech. The combination of indistinguishable DeepFake prod-
ucts and social media networks further amplify the effect of
abusing such technology (e.g. spreading politician propaganda
and discrediting individuals). As a visual confrontation tech-
nology, DeepFake can deceive human eyes and even modern
face recognition models [48].
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Considering its serious social impacts, DeepFake has re-
cently gained significant attention. Various methods have
been proposed for DeepFake detection, which can be roughly
divided into two categories: image-based and video-based
approaches.

Image-based DeepFake Detection. Early attempts targeted
at the spatial artifacts on the manipulated faces and various
2D CNN models [12], [17]–[19] were designed to extract
high-level information from the spatial domain for forgery
detection. [17] designed two compact networks to capture the
mesoscopic features and [19] proposed a capsule network.
Meanwhile, some researchers [20]–[23] exploited frequency-
aware anomalous patterns to mine irregularities with low-level
statistic information. [21] and [22] detected the artifacts with
anomalous amplitude and phase spectrum, respectively. Be-
sides, some works [6], [10], [11], [24] took advantage of RGB
space and frequency domain simultaneously to capture subtle
forgery artifacts. [24] leveraged spatial features and steganaly-
sis features. F 3-Net [10] extracted DCT-based frequency fea-
tures to enhance the detection robustness against compression.
[56] proposed a dual-stream network by integrating RGB and
YCbCr color spaces to detect post-processed generated faces.
[53], [54] simulated the synthetic data generation pipeline
where a fake image is generated by blending two pristine
images, aiming to learn the artifacts caused by blending. [55]
proposed an encoder-decoder generator to track the potential
texture traces left in image generation. [59] leveraged a two-
stage self-supervised paradigm to learn features of intra-class
consistency and inter-class diversity.

Video-based DeepFake Detection. Recent studies tended
to leverage temporal inconsistencies as a means to indicate
abnormal face movement in a video stream. This inconsis-
tency usually occurs during the synthesis process since many
manipulation methods were processed on isolated frames. [25]
exploited abnormal eye-blinking frequency for detection. [26]
detected irregular binoculars movements based on spontaneous
and consistent eye-gaze motion. In [28]–[30], CNNs followed
by LSTM modules were introduced to capture spatial-temporal
artifacts. [27] adopted optical flow fields to exhibit latent inter-
frame dissimilarities. In [52], a two-stream method analyzing
frame-level and temporality-level characteristics was designed
to improve the detection performance against compression.
[31] exploited the intrinsic synchronization patterns between
visual and auditory modalities for joint detection.

The above methods have achieved impressive progress ben-
efiting from the releases of large-scale face forgery datasets

Copyright© 2023 IEEE. Personal use of this material is permitted. However, permission to use this
material for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, JANUARY 2023 2

[12]–[15]. However, they often tended to overfit their training
dataset(s) and usually experienced significant performance
degradation under the cross-dataset scenario. Recent works
have noticed this problem and attempted to enhance the
generalization capability to unseen forgeries. FWA [32] and
Face X-ray [9] detected the artifacts produced by blending
boundaries based on the assumption that most of the manip-
ulation methods share similar blending processes between the
altered face and the background. However, this assumption is
not always valid and susceptible to some well-designed post-
processing operations. [11] proposed to utilize the image’s
high-frequency noise features by removing the color texture to
reveal forgery traces; however, it is vulnerable to compression
and other post-processing procedures. [7] focused on the
temporal coherence by reducing the spatial convolution kernel
size to 1 and maintained the temporal convolution kernel
size unchanged. [8] targeted high-level semantic irregularities
in mouth movement using the lipreading network. However,
when the most noticeable forgery traces lie outside the mouth
region, their method cannot achieve satisfactory results.

In this paper, a novel DeepFake detection network, i.e.
Complementary Dynamic Interaction Network (CDIN), is pro-
posed, which leverages both the dynamic information of the
most discriminative local region (i.e. the mouth region) and the
global context (i.e. the entire face) to achieve more accurate
and generalizable detection results. Based on the observation
that some discontinuities may occur in non-adjacent frames,
for example, moles on the face may appear or disappear con-
stantly [7]. We propose to leverage Transformer [33] to model
long-range dependencies as well as capture incoherent artifacts
along the temporal dimension for the entire faces. Besides,
a 3D Convolutional neural network [34] with well-designed
reception fields is adopted to capture dynamic details of mouth
region. The two branches interact with each other to learn
complementary dynamics using the proposed Complementary
Cross Dynamics Fusion Module (CCDFM) at multiple levels.
With CCDFM, the global branch will pay more attention
to the lip movements, and the local branch will gain more
information about the global face region. In this way, both
the global dependency and the local fine-grained artifacts can
be effectively captured and represented in a spatiotemporal
manner.

The major contributions are summarized as follows:

• A two-branch Complementary Dynamic Interaction Net-
work (CDIN) is proposed to exploit both global (entire
face) and local (mouth region) anomalous dynamic arti-
facts for DeepFake detection.

• A new Complementary Cross Dynamics Fusion Module
(CCDFM) is proposed for mutual reinforcement between
the entire face and the mouth region in an interactive
manner.

• Extensive experiments on several benchmarks have
demonstrated the superiority of our method, especially
in detecting unknown manipulation methods.

The rest of the paper is organized as follows. Section II
discusses the major challenges and introduces our motivations.
Section III presents the proposed method and elaborates each

(a) mouth dynamic discontinuity

Mouth Region

Entire Face

(c) uncoordinated relationship between mouth region and entire face 

Real Fake

(b) subtle artifacts over the full-face

Fig. 1. Illustration of visually noticeable artifacts left by DeepFake. (a): incon-
sistent mouth movement;(b): mouth dynamic discontinuity(c): uncoordinated
relationship between mouth region and entire face.

key module. The experiment results and discussions are given
in Section IV. Section V draws the conclusion.

II. MAJOR CHALLENGES AND MOTIVATIONS

Previous face forgery detection methods have achieved re-
markable successes in detecting specific manipulation methods
but experienced a dramatic performance drop under cross-
database scenarios. In real-word scenarios, Deepfake produc-
ers can choose any type of manipulation method, which may
not appear in the detector’s training set. Therefore, how to
design a detector with good generalization ability becomes
an important task. Compared with static artifacts, dynamic
information depicting the movements of facial features is much
more difficult to forge without leaving visual or statistical
traces and recent researches [7]–[9], [11], [32] have demon-
strated the dynamic features can help improve the detector’s
generalization ability. However, most existing methods based
on dynamic feature analysis focused on either the entire face
region [9] or a specific local region [8] and cannot yet achieve
satisfactory results under the cross-dataset scenario due to the
following challenges.

Local characteristics analysis alone lacks sufficient dis-
criminative traces. Previous works [8] have shown that
DeepFake manipulation methods leave traceable inconsisten-
cies in certain local regions during movement. The mouth
region is one of the most discriminative regions in DeepFake
detection because it has rich dynamic information and its
movement is difficult to synthesize naturally and smoothly.
For example, in Fig.1 (a), it is observed that the consistency of
tongue, teeth and oral cavity between adjacent frames are often
disrupted due to illumination or missing reflection. Besides,
the dynamics of mouth shape maybe irregular compared to
pristine videos [49]. Although the local information alone is
conducive to detecting some anomalous artifacts, from a global
perspective, there are numerous forgery methods manipulating
face out of such local regions. If the model is forced to
learn the differences in the local regions, it tends to learn the
manipulation-independent discrepancies such as background
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Fig. 2. Network architecture of the proposed CDIN. CDIN consists of two parallel branches: the global fundamental dynamics-aware branch(GAD-branch
in short) and the local representative mouth movements-aware branch(LRM-branch in short), which process consecutive frames of entire face and mouth
region respectively. CCDFM is carefully designed as a bridge module to fuse local movement details in LRM-branch with global dynamic representations in
GAD-branch in an interactive fashion.

or content information. Thus, it easily overfits on the training
set and shows limited generalization capability. Besides, with
numerous advances in lip-sync manipulation techniques [16],
[50], [51], the mouth region and its movements can be
generated more realistically, which makes it more difficult
to differentiate fake lip movements from genuine ones solely
based on mouth region analysis.

Blurry focus caused by full-face analysis alone. With
the counterfeits manipulated more realistically, the discrepan-
cies between real and fake videos become more subtle and
localized. For example, in Fig.1 (b), it is observed that the
artifacts may appear on the nostril, oral cavity, etc., where
the differences between real and fake videos are very subtle.
To differentiate such anomalies, the full-face representations
should focus more on the local manipulation-sensitive regions,
which are prone to exposure of anomalies. However, it is
difficult to concentrate on these manipulation-sensitive regions
only relying on the global supervision from a binary label.
Such analysis from a global view solely is hard to reveal
the fine-grained artifacts and it is vulnerable to learn some
manipulation-independent differences. Therefore, the blurry
focus caused by full-face analysis alone also limits the im-
provement of generalization capability.

In order to address the above challenges, both the global
(i.e. entire face) and local (i.e. mouth region) dynamics should
be analyzed simultaneously and comprehensively. [60], [61]
also utilize both the global and local characteristics to expose
the spatiotemporal artifacts for DeepFake detection. [60] takes
random selected two frames as inputs, which did not consider
the long-term abnormal variations over time. [61] modeled the
dynamic incoherence from features acquired by the pooling
operation. However, temporal consistency representation from
pooling features may result in a loss of fine-grained informa-
tion. Moreover, a late fusion strategy is applied in both of [60],
[61] to simply concatenate the global and local features for
classification. In contrast, according to our motivation, local
representations should be exploited to refine the global rep-
resentations to enhance local manipulation-sensitive features.
On the other hand, to avoid the local branch being trapped in
local decision bias, the local representation should preserve the
global perception consistency of entire face dynamics. To this

end, both the global and local dynamics are mutually comple-
mented and reinforced in an interactive manner. Specifically,
the information interaction and complementarity between the
global and local features are progressively learned from dif-
ferent stages of the network (i.e., from low-level textural to
high-level semantic features). The global information can help
the local feature gain additional reception fields, and thus the
incoordination artifacts between the local region and the rest
of the face region (Fig. 1 (c)) could be revealed effectively.
On the other hand, the local information can help the global
feature to emphasize the local manipulation-sensitive regions.
Motivated by the above analysis, a novel network for Deepfake
detection, i.e. Complementary Dynamic Interaction Network
(CDIN), is designed and elaborated in Section III.

III. PROPOSED METHOD
A. Overview
The overall architecture of the proposed network is given in
Fig. 2. It consists of two parallel branches: the Global Adaptive
Dynamics-aware branch (GAD-branch) and the Local Repre-
sentative Lip Movements-aware branch (LRM-branch), which
process consecutive frames of the entire face and the mouth
region, respectively. The two branches interact with each
other to learn complementary dynamics using the proposed
Complementary Cross Dynamics Fusion Module (CCDFM) at
multiple levels. Finally, the predictions of these two branches
are integrated to derive the final detection result.

B. Network Structure
1) Global Adaptive Dynamics-aware Branch
Given the entire face sequence as input, the Global Adaptive

Dynamics-aware branch (GAD-branch) aims to characterize
the global dynamics and model long-range dependencies for
the entire face. In the GAD-branch, TimeSformer [33] is em-
ployed as the backbone because it does not perform any spatial
or temporal downsampling, which facilitates learning the fine-
grained dynamics for each patch in the face region. The GAD-
branch is divided into 4 stages and each stage contains 3
“Divided Space-time Attention” modules as shown in Fig. 2,
where temporal and spatial attention are separately applied one
after the other. The temporal attention is computed from all the
patches at the same spatial location in the other frames and the
spatial attention is computed from all the patches in the same
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frame. The semantic information is gradually enhanced with
the stack of stages with the non-downsampling scheme and the
divided spatiotemporal self-attention mechanism. Therefore,
GAD-branch is able to capture the characteristics of the global
dynamics effectively.

2) Local Representative Lip Movements-aware branch
Local anomalous dynamics are crucial for face forgery

detection. In this work, we employ the I3D structure as the
backbone of the LRM-branch. The whole branch can be
divided into 3 stages, each stage is composed of multiple
convolution blocks. Each block consists of several Inception
modules, which increase the width of the network with multi-
scale reception fields to obtain high-level semantic represen-
tations. The convolution kernels slide over feature maps with
overlap, which aims to extract fine-grained local features.
LRM-branch takes the lip sequence as input and adopts the
feature pyramid structure to further enlarge the reception field
for exploring dynamic details. The resolution of feature maps
decreases while the number of channels increases from the
lower to upper layers. With the occasional max-pooling layers
to halve the resolution of the grid, the local motion artifacts
will be further amplified. Finally, the global average pooling
is adopted to integrate all the features and then fed it to an
FC layer for classification. The above 3D CNN with well-
designed multi-scale reception fields is sensitive to subtle
movement details, especially for lip movements, which contain
rich dynamic information.

3) Complementary Cross Dynamics Fusion Module
To explore irregular mouth movements as well as preserve

the global perception of entire face dynamics, we devise
a novel Complementary Cross Dynamics Fusion Module
(CCDFM) for mutual reinforcement between the two branches
in an interactive manner, whose structure is shown in Fig. 2.
CCDFM bridges the two branches at multiple levels. Specif-
ically, after the first and second stage of both branches, it
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Fig. 4. Detailed operation of Global Dynamics-aware Module.

is applied to enable both branches to learn from each other.
CCDFM contains a Mouth Dynamics Guided module and a
Global Dynamics-aware module in the first two stages, a Cross
Attention Fusion module in the last stage. Considering that the
low-level features mainly contain local details, while high-
level features are strongly related to semantic information,
thus we apply the mutual early fusion strategy in the first
two stages for low-level spatial content interaction, the cross-
attention mechanism for high-level semantic communication.
The Mouth Dynamics Guided module helps the global branch
focus more on the local manipulation-sensitive regions and
the Global Dynamics-aware module helps the local branch to
gain addition global context information. The Cross Attention
Fusion module further reinforces the high-level semantic in-
teraction between the two branches.

Mouth Dynamics Guided Module. Inspired by CBAM
[39], we adopt spatial attention from the local branch to
highlight the mouth dynamics and guide the global branch to
focus more on irregular lip movements. It is worth noting that
the spatial attention weights are derived from the local mouth
movements, and are applied to the mouth region of the global
feature maps. The detailed operations are shown in Fig. 3.
We firstly obtained the mouth movement representations with
feature size C×T ×H×W from the local branch, and global
dynamic representations with feature size T ×N×D from the
global branch, respectively. T, N, and D separately represent
the number of RGB frames, the total number of image patches,
and patch embedding dim. C, H, and W separately represent
the channel number, height, and width of the current feature
map. As in [39], the attention weights are firstly produced
from the local mouth movements through spatial attention
mechanism. Besides, Sigmoid is applied to confine the weight
values to 0-1. We use the ROI Align proposed in [62] to
acquire the feature maps of the mouth region from the global
representations. A down-sampling operation is performed on
the attention weights to align the spatial dimension of the ROI
features. And then we acquire the weighted mouth feature
maps through the element-wise product. Finally, we use the
down-sampled bounding box to re-align the mouth feature
maps to the global positions, and then the weighted features
of the mouth region are added to the mouth region of global
representations.
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Global Dynamics-aware Module. Feeding the global in-
formation to local branch is implemented by the classification
token. Similar to the settings in the vanilla ViT [35], after patch
partition and linear embedding, a learnable vector Z∈ RT×D

is prepended to the embedded patches of clip sequence in
the first position. T, and D separately represent the number
of RGB frames, and patch embedding dim. The learnable
vector serves as the classification token which integrates all the
features through Divided space-time blocks and represents the
global information. The detailed operations are shown in Fig.
4. Specifically, in the early interaction, we fetch it from the first
position of the global features and then feed it to the Global
Dynamics-aware Module for fusion. The classification token
embedding is further up-sampled by bi-linear interpolation to
align the spatial scale. The channel dimension is then aligned
by a 1 × 1 convolution. Finally, it is reshaped and added to
the local feature maps.

Cross Attention Fusion Module. A cross-attention fusion
module is proposed to further enhance the interaction between
the global and local branches. As shown in Fig. 5, denoting
input features obtained from the GAD-branch and LRM-
branch as X∈ RT×N×D and Xm∈ RT×C×H×W , respectively.
We first convert the mouth dynamic representation Xm∈
RC×T×H×W using an adaptive average pooling along spatial
scales. Then a trainable projection followed by shape transfor-
mation is applied to acquire key Xk

m∈ RT×1× Dh . Besides, we
flatten Xm and then reshape it to T × (H ×W )× C. Query
Xq

m∈ RT×(H×W )× Dh and Value Xv
m∈ RT×(H×W )× Dh

are obtained through a trainable projection. Similarly, X is
transformed to obtain Xk∈ RT×1×Dh , Xq∈ RT×N×Dh and
Xv∈ RT×N×Dh . Then we compute the correlation between
the two branches.

For the entire face, we generate the attention map by

A = Softmax(Xq ⊗Xk
m) (1)

and then obtain the refined feature

Xout = A⊗Xv (2)

according to its correlation with local dynamics, where Xout∈
RT×N×Dh . We then acquire Xout∈ RT×N×D using a Linear
projection to re-align the original embedding dim. Finally, the
global representation is obtained by

Xout = Xout +X (3)

The same operation is executed on mouth movements,
where

Xout
m = Softmax(Xq

m ⊗Xk)⊗Xv
m (4)

and Xout
m ∈ RT×(H×W )× Dh . A Linear projection followed

by shape transformation is then applied to obtain Xout
m ∈

RC×T×H×W . Finally, the refined local representation is ob-
tained by

Xout
m = Xout

m +Xm (5)

Xout and Xout
m embody the interaction of complementary

information and mutually promote the dynamic feature com-
munication.

IV. EXPERIMENTS AND DISCUSSIONS
A. Settings
Datasets. Following the evaluation protocol of recent works
[9], [12], we adopted the most commonly-used benchmark
datasets FaceForensics++(FF++) [12] for training, Celeb-
DF(v2) [13], DeepFake Detection Challenge(DFDC) [14] and
ForgeryNet [63] for evalution. FF++ is the most widely used
face forgery dataset consisting of 1,000 original videos and
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4,000 fake videos. Fake videos are generated by four state-of-
the-art face manipulation methods: Deepfakes [3], Face2Face
[36], FaceSwap [4] and NeuralTextures [37]. There are three
versions of FF++ in terms of compression level, i.e., raw,
high quality(HQ) and low quality(LQ). Generally speaking,
the videos in the LQ version are usually more difficult to
distinguish between real and fake owing to high compression
loss. The HQ version was adopted for training and the official
split was adopted (720 videos for training, 140 videos for
validation, and 140 videos for testing). The corresponding
four types of manipulated videos were adopted to generate
negative samples. During training, each video was divided
into non-overlapping clips by a sliding window mechanism.
Each video clip contained 16 frames. We randomly sampled
4 clips per fake video as negative samples. As there are
four types of fake videos, to preserve the class balance,
an equal amount 4 × 4=16 clips were sampled from the
corresponding real video as positive samples. Celeb-DF(v2) is
a high-quality face swapping dataset which comprises 5,639
videos from YouTube. The fake videos are generated by an
improved manipulation method thus leaving few noticeable
tampering traces. DFDC is a large-scale dataset where subjects
in complex scenes are manipulated using various unknown
methods. ForgeryNet is a large face forgery dataset with
unified annotations in image-level and video-level data. It
is worth noting that the ForgeryNet dataset contains diverse
manipulation types where 15 forgery approaches are applied
to image-forgery construction and 8 of them are applied to
the video-forgery construction. During inference, each video
was divided into overlapping clips with a step of 1 by the
sliding window mechanism where the window size was 16
frames. The final video-level prediction result was obtained
by averaging all the clips’ prediction scores. The threshold
was set to 0.5 to decide the final prediction label.
Evaluation Scenarios. To comprehensively evaluate the detec-
tion performance and generalization capability of our method,
we considered the following two scenarios: Intra-dataset and
Cross-dataset. Intra-dataset: The experiments were conducted
on FF++(HQ) which consists of forgery videos tampered by
four different manipulation methods from the same source
videos. Cross-dataset: The experiments are performed under
the cross-dataset scenario where training and testing samples
are collected from different datasets. All the models are trained
on FF++(HQ) [12] and evaluated on Celeb-DF-v2 [13], DFDC
[14], respectively. This setting is more challenging than the
previous one due to the variations in manipulation methods,
video content, etc.
Baselines. To comprehensively evaluate our method, several
state-of-the-art DeepFake detection methods were adopted for
comparison. Image-based detection methods: Xception [12],
Face X-ray [9], F3 Net [10] and Video-based detection
methods: FTCN [7], LipForensics [8]. For a fair comparison,
we re-implemented all the baselines according to the training
protocol in their original papers.1

1For Xception, FTCN, and LipForensics, we only wrote scripts for dataset
organization and training, which were not available in their open-source
projects.

TABLE I
EFFECTIVENESS OF LRM-BRANCH

Model Intra-dataset Cross-dataset

DF F2F FS NT Avg FF++ Celeb-DF DFDC Avg

LSTM [42] 0.991 0.964 0.981 0.962 0.974 0.985 0.684 0.658 0.776
C3D [43] 0.977 0.911 0.919 0.902 0.927 0.938 0.656 0.681 0.759
P3D [44] 0.982 0.944 0.958 0.913 0.949 0.968 0.703 0.692 0.788

R(2+1)D [45] 0.980 0.922 0.945 0.918 0.941 0.961 0.714 0.686 0.787
I3D [34] 0.988 0.972 0.979 0.951 0.972 0.979 0.749 0.701 0.810

TABLE II
EFFECTIVENESS OF GAD-BRANCH

Model Intra-dataset Cross-dataset

DF F2F FS NT Avg FF++ Celeb-DF DFDC Avg

ViViT [46] 0.966 0.953 0.969 0.920 0.952 0.961 0.713 0.683 0.786
Swin Base [47] 0.986 0.971 0.988 0.967 0.978 0.988 0.755 0.703 0.815

TimeSformer [33] 0.980 0.971 0.970 0.974 0.974 0.977 0.858 0.712 0.849

B. Implementation Details
For each video frame, DLIB [38] was adopted to extract
and align face regions and the aligned faces were resized
to 224 × 224. The corresponding mouth regions were also
cropped and resized to 64 × 128. The face crops and the
corresponding mouth regions were fed to the network in
parallel. The proposed framework was implemented via open-
source PyTorch [40]. TimeSformer [33] and I3D [34] were
adopted as our backbone and the weights were initialized with
the pre-trained model on the Kinetics dataset [34]. The number
of DSTA blocks L was set to 12 and its embedding dim D was
set to 768. The cross attention hidden dim Dh was set to 256.
The Adam optimizer was used to train the framework with a
learning rate of 1e-5 and a weight decay of 1e-4. The batch
size was 8 and 30 epochs were trained. During training, the
overall loss function is composed of two equally weighted
cross entropy losses supervising both the global and local
features. During inference, the final prediction is calculated
by a weighted summation over the prediction scores of both
the GAD-branch and LRM-branch. The weights for GAD and
LRM branches are empirically set as 0.6 and 0.4, respectively.

C. Ablation Study
Effectiveness of the Backbone Networks. To comprehen-
sively evaluate the effectiveness of our network design, several
experiments were conducted for both the global and local
branches. For the LRM-branch, various lip movement analysis
networks such as LSTM [42], C3D [43], P3D [44], R(2+1)D
[45], I3D [34] were adopted for comparison. The comparison
results are illustrated in Table I. It is observed that LSTM
exhibits the best detection results within dataset, but is more
likely to suffer from the overfitting problem. I3D outperforms
all the competitors in terms of the generalization ability as
well as shows a good detection performance under within-
dataset scenario, which has demonstrated that it can learn a
more robust dynamic representation.

For the GAD-branch, several video-level Transformer archi-
tectures were experimented to validate their effectiveness in
charactering global dynamics. Popular models used in video
understanding and analysis such as ViViT [46], TimeSformer
[33] and Swin Transformer [47] were considered for compar-
ison. It can be observed from Table II that Swin Transformer
achieves the best intra-dataset classification results but it does
not generalize well to unseen DeepFake methods. TimeS-
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TABLE V
CROSS-MANIPULATION GENERALIZATION EVALUTION

Training Set Methods Intra-dataset Cross-dataset

DF F2F FS NT Avg FaceShifter FS-GAN DeepFakes BlendFace MMRepla DF-S-S T-H-V ATVG-Net Avg

DF
Xception [12] 0.999 0.718 0.421 0.877 0.754 0.480 0.499 0.552 0.472 0.476 0.593 0.501 0.547 0.515

FTCN [7] 0.993 0.760 0.535 0.874 0.791 0.502 0.635 0.595 0.567 0.556 0.616 0.528 0.531 0.566
LipForensics [8] 0.997 0.757 0.366 0.908 0.757 0.573 0.703 0.561 0.578 0.478 0.675 0.566 0.862 0.662

Ours 0.998 0.799 0.542 0.881 0.805 0.574 0.612 0.571 0.596 0.512 0.707 0.592 0.745 0.692

F2F
Xception [12] 0.514 0.993 0.266 0.463 0.559 0.322 0.271 0.349 0.308 0.361 0.334 0.303 0.271 0.315

FTCN [7] 0.817 0.989 0.764 0.859 0.857 0.608 0.589 0.679 0.602 0.610 0.622 0.538 0.613 0.608
LipForensics [8] 0.884 0.992 0.723 0.918 0.879 0.625 0.757 0.624 0.613 0.616 0.665 0.507 0.623 0.629

Ours 0.845 0.996 0.705 0.919 0.866 0.618 0.670 0.681 0.600 0.672 0.692 0.479 0.641 0.632

FS
Xception [12] 0.722 0.566 0.999 0.756 0.761 0.640 0.512 0.516 0.430 0.330 0.492 0.514 0.338 0.472

FTCN [7] 0.881 0.697 0.989 0.767 0.834 0.518 0.531 0.580 0.573 0.632 0.578 0.593 0.599 0.576
LipForensics [8] 0.540 0.686 0.995 0.384 0.651 0.660 0.618 0.589 0.646 0.560 0.679 0.650 0.380 0.598

Ours 0.781 0.677 0.998 0.772 0.807 0.670 0.607 0.556 0.675 0.636 0.640 0.655 0.542 0.622

NT
Xception [12] 0.845 0.774 0.391 0.987 0.749 0.533 0.466 0.540 0.517 0.547 0.455 0.554 0.639 0.531

FTCN [7] 0.900 0.881 0.624 0.980 0.846 0.566 0.537 0.550 0.541 0.447 0.550 0.572 0.601 0.546
LipForensics [8] 0.955 0.890 0.520 0.965 0.833 0.466 0.677 0.484 0.454 0.449 0.501 0.481 0.696 0.526

Ours 0.929 0.901 0.622 0.998 0.863 0.591 0.563 0.540 0.558 0.499 0.578 0.562 0.721 0.577

TABLE III
STUDY ON MODULE EFFECTIVENESS

Model Intra-dataset Cross-dataset

DF F2F FS NT Avg FF++ Celeb-DF DFDC Avg

GAD 0.986 0.917 0.961 0.906 0.942 0.935 0.828 0.712 0.825
LRM 0.979 0.922 0.940 0.883 0.931 0.937 0.759 0.701 0.799

GAD+LRM+MG(Stg .1) 0.989 0.931 0.965 0.908 0.948 0.955 0.857 0.759 0.841
GAD+LRM+MG(Stg .1, 2) 0.993 0.935 0.969 0.914 0.953 0.961 0.873 0.770 0.868

GAD+LRM+MG(Stg .1, 2)+CAM 0.998 0.980 0.979 0.923 0.970 0.985 0.891 0.784 0.887

former exhibits high detection accuracies in the FF++ dataset
and also has a much better generalization ability.
Study on module effectiveness. We also conducted experi-
ments to evaluate the effectiveness of each interactive module
in our method. The comparison results are presented in Table
III, where GAD represents the GAD-branch, LRM represents
the LRM-branch, MG denotes the Mouth Dynamics Guided
module and the Global Dynamics-aware module. CAF repre-
sents the Cross Attention Fusion module. Stg. 1, 2 denotes the
fusion stage.

From the table, it can be observed that: i) the two-branch
model outperforms either GAD or LRM on all of the datasets,
which demonstrates the global and local information pro-
mote each other effectively; ii) the model’s performance and
generalization capability are gradually improved with each
module activated, which demonstrates the effectiveness of each
interactive component.

Moreover, with all modules activated, experiments are
conducted on the following variations from the perspective
of complementarity between global representation and local
dynamics to explore the effect of information flows from
different branch : 1) isolated branch: GAD. Only the entire
face sequences were adopted to train the GAD-branch and
the LRM-branch is deactivated; LRM. Only the mouth re-
gion sequences were employed for training the LRM-branch
and GAD-branch is deactivated. 2) Unidirectional information
transmission: GAD→LRM. Unidirectional information trans-
mission from global to local branch; LRM→GAD. Unidirec-
tional information transmission from local to global branch.
3) Bi-directional information interaction: GAD↔LRM. Bi-
directional information interaction between global and local
branch.

From Table IV, it is observed that the detection performance

TABLE IV
STUDY ON INFORMATION COMPLEMENTARITY

branch Model Intra-dataset Cross-dataset

DF F2F FS NT Avg FF++ Celeb-DF DFDC Avg

GAD

- 0.986 0.917 0.961 0.906 0.942 0.935 0.828 0.712 0.825
LRM→GAD 0.994 0.929 0.968 0.919 0.953 0.943 0.847 0.744 0.845
GAD↔LRM 0.997 0.919 0.972 0.923 0.953 0.972 0.880 0.775 0.876

LRM

- 0.979 0.922 0.940 0.883 0.931 0.937 0.759 0.701 0.799
GAD→LRM 0.987 0.925 0.951 0.899 0.941 0.960 0.794 0.730 0.818
GAD↔LRM 0.992 0.926 0.955 0.909 0.946 0.966 0.846 0.767 0.860

and generalization capability of both the GAD and LRM are
gradually improved as the Unidirectional and Bi-directional
information interaction, which demonstrate that with CCDFM,
the global branch and local branch promote the discriminative
power of each other. During training, the local LRM-branch
tends to provide useful features to the global view of entire
face from the local anomalous regions. In other words, the
global branch pays more attention to irregular mouth move-
ments through information transmission. On the other hand,
the global information integrated to mouth regions improves
the capability of local perception to entire faces. These results
have demonstrated that the global dynamic representation and
local mouth movements are complementary to each other.

D. Comparison with SOTA methods

Generalization to unseen manipulations. To exhibit the
generalization capability of our method, we first conducted
cross-manipulation evaluation under both intra-dataset and
cross-dataset scenarios. It is worth noting that the Validation
part of Video Forgery Classification datasets in ForgeryNet
[63] were adopted for the cross-manipulation evaluation
under cross-dataset. ForgeryNet [63] contains diverse ma-
nipulation types where 8 forgery approaches are applied
to video-forgery construction: FaceShifter, FS-GAN, Deep-
Fakes, BlendFace, MMReplacement(MMRepla), DeepFakes-
StarGAN-Stack(DF-S-S), Talking Head Video(T-H-V), and
ATVG-Net. We chose all of the forgery types as negative
samples, respectively, and real face dataset RAVDESS [64]
used in ForgeryNet as the positive samples in our experiments.
From table V, it can be observed that our method achieves
excellent generalization ability to unseen manipulations under
both intra-dataset and cross-dataset scenarios. In intra-dataset
evaluation, all the manipulation types are from the same source
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Fig. 6. Robustness to unseen perturbations.

TABLE VI
CROSS-DATASET GENERALIZATION

Training Set Methods FF++ Celeb-DF DFDC Avg

FF++

Xception [12] 0.997 0.659 0.690 0.782
F3-Net [10] 0.986 0.732 0.701 0.806

Face X-ray [9] 0.998 0.795 0.655 0.816
FTCN [7] 0.979 0.869 0.740 0.863

LipForensics [8] 0.973 0.824 0.735 0.844
Ours 0.985 0.891 0.784 0.887

Celeb-DF

Xception [12] 0.410 0.994 0.668 0.690
F3-Net [10] 0.628 0.990 0.710 0.776

Face X-ray [9] 0.513 0.991 0.691 0.732
FTCN [7] 0.721 0.993 0.747 0.820

LipForensics [8] 0.718 0.994 0.798 0.837
Ours 0.723 0.997 0.802 0.840

videos, thus the four compared detection methods achieve
good generalization results. However, in the cross-dataset
evaluation, our method outperforms the baseline Xception
[12] and recent state-of-the-art LipForensics [8] on most of
the manipulation types. LipForensics only analyze the mouth
region while ignoring the artifacts lying outside the mouth
region of the entire face. In addition, LipForensics is required
to be pretrained on a large corpus of lipreading videos which
introduces prior knowledge; however, in our LRM-branch,
such a requirement is not necessary and thus the computa-
tional cost is reduced. Moreover, both the global fundamental
representation and the mouth movements are exploited to
capture spatial and temporal artifacts, thus showing better
generalization capability to unseen manipulations.

Generalization to unseen datasets. To further demonstrate
the generalization ability, we performed cross-dataset evalua-
tions by training and testing model on different datasets. Table
VI shows that compared with other methods investigated,
our method can achieve much better generalization capability
under cross-dataset scenarios. It can also be observed that the
detection performance of most image-based methods, such
as Xception [12], F3-Net [10], drops much more drastically
under cross-dataset scenarios compared with that of the video-
based methods. It is because the static texture artifacts leaved
by specific manipulation methods are relatively uniform and
thus the frame-based methods based on these artifacts are
vulnerable against overfitting. FTCN [7] learns feature rep-
resentation from a global view, and thus is less sensitive to
some forgery traces localized in critical facial regions such as

TABLE VII
ROBUSTNESS TO COMPRESSION

Methods Video-level AUC (%)

Raw HQ LQ

Xception [12] 0.998 0.993 0.920
Face X-ray [9] 0.998 0.978 0.773

F3 Net [10] 0.999 0.994 0.958
FTCN [7] 0.997 0.979 0.963

LipForensics [8] 0.999 0.973 0.961

Ours 0.999 0.985 0.968

mouth. On the contrary, our model aims to explore both global
dynamic artifacts and local mouth movements irregularities,
and exhibits better generalization performance.
Robustness against compression. Due to the wide spreading
of compressed videos on social media networks, we further
conducted experiments following the setting in [8] on FF++
at different compression levels to validate the robustness of
our method.

From the results of Table VII, we can observe that all
models perform almost flawlessly on raw videos, but their
robustness varies when trained on different compression levels.
Frame-based detection algorithms tend to suffer more under
compression scenarios due to the destruction of intra-frame
artifacts, such as Face X-ray which relies on detecting blending
boundaries and its performance drops dramatically on LQ
videos. Compared with the state-of-the-art methods, our model
achieves comparable performance on raw and LQ versions,
which demonstrates that the proposed features are not sensitive
to resolution and image noise.
Robustness to unseen perturbations. Following [7], [8],
we conducted experiments to validate the robustness of our
method to unseen perturbations that may be encountered
in real-world scenarios. Three types of perturbations were
considered: 1) color saturation change distortion, 2) local
block-wise distortion, and 3) Gaussian blur distortion. Each
of these distortions was divided into five intensity levels
as described in [58]. We trained the models on FF++ raw
datasets and evaluated them on FF++ test datasets processed
by each of the perturbations. Video-level AUC scores as a
function of the perturbation level for various distortions are

HanyiWang
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（a）LRM without  CCDFM （b）LRM with CCDFM （c）GFD without CCDFM （d）GFD with CCDFM

Fig. 7. Visulization of features extracted from LRM branch and GAD branch respectively.

（a）LipForensics （b）proposed CDIN （c）LipForensics （d）proposed CDIN

Intra-Dataset Cross-Dataset

Fig. 8. The t-SNE visualization of features extracted in LipForensics and our proposed CDIN under intra-dataset and cross-dataset respectively.

illustrated in Fig. 6. Average denotes the mean AUC score
across all perturbations at each distortion level. We can observe
that Xception, a frame-based detection method, is vulnerable
against intra-frame content destruction such as gaussian blur,
while the other methods all exploit temporal information
to capture dynamic artifacts thus showing better robustness
against high-frequency content perturbations. Besides, Lip-
Forensics and FTCN all experience significant performance
drop under block-wise distortion where our method is almost
unaffected. It suggests that our method learns more robust
feature representations against some common perturbations.

E. Visualization
Visualization of feature distribution. To better illustrate the
effectiveness of the proposed framework, feature distributions
using t-SNE were visualized.

We firstly visualized features extracted from GAD-branch,
LRM-branch with and without CCDFM respectively on FF++
test dataset. The visualization results were given in Fig. 7.
From the figure, it can be observed that compared with
exploiting full-face dynamics or mouth movements separately,
bidirectional information interaction promotes the discrimina-
tive power of single branch each other. With CCDFM, both
the LRM branch and GAD branch learn better representations
where the clusters for real videos and the four manipulations
are separated by an obvious margin.

Moreover, we further visualized the learned feature distribu-

tion of our proposed method and LipForensics [39] trained on
FF++ raw datasets and tested under within-dataset and cross-
dataset scenarios respectively. The features of our method were
extracted from the layer right before the FC layer in GAD-
branch. In particular, a total of 700 FF++ test videos were se-
lected for within-dataset testing, and all 5,639 videos of Celeb-
DF were selected for cross-dataset testing. The visualization
results are shown in Fig. 8, it is observed that our method
embeds the face videos into a relatively compact feature
space compared with LipForensics under both within and cross
sets. Due to the missing of global perception, mouth region
analysis alone struggles to learn common representations over
the whole face, and thus the clusters of real and fake may
be indistinguishable. On the contrary, our method captures
more generalizable features as the clusters of real and fake
are separated by an obvious margin under within datasets.
Moreover, the features exhibit a more aggregated form com-
pared with mouth region analysis alone under cross-dataset
scenario, which exposes the discrepancy between pristine and
manipulated videos. The visualization results further verify the
effectiveness and generalization capability of our method to
exploit both global and local dynamics in a complementary
manner.

Visualization of anomalous regions. To intuitively under-
stand the decision-making of the model, we visualize the
spatial anomalous regions on which the model depends for
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FF++(FS)

FF++(F2F)

FF++(DF)

FF++(NT)

Celeb-DF

DFDC

(A) (B) (A) (B)

Fig. 9. Visualization of anomalous regions on different datasets. Each row shows two examples. For each example, the first two columns are consecutive
frames in a video clip. (A) visualizes anomalous regions using Grad-CAM [41], (B) visualizes temporal defect using the localization method in FTCN [61]

decision-making according to the classification results of an
entire face. To this end, Grad-CAM [41] is utilized, which
uses the gradients flowing into the final layer to produce
the attention map highlighting the decision regions. Besides,
we also employed the visualization method in FTCN [61]. It
localize temporally incoherent regions through discriminating
whether each of the sliding window area is anomalous or not
based on the sliding window mechanism across the entire face.
The visualization results derived from the global branch where
full-face was fed to extract global features and interact with
mouth information through devised fusion module CCDFM.
The visualization results against different datasets are illus-
trated in Fig. 9. It is observed that for different manipulations,
the global features pay attention to different manipulated areas,
such as eyes, eyebrow, forehead, nose, blending boundary and
so on. It can also be observed that anomalous mouth dynamics
are captured, which is in accordance with the motivation of our
method that the global branch of full-face analysis preserve the
ability to perceive the global dynamic artifacts while paying
more attention to the anomalous mouth movements. Besides,
when the manipulated artifacts are not obvious in mouth
regions, our method will still detect DeepFakes depending on
other tampered traces appeared in nose, eye regions instead
of forcing the global feature to focus on mouth region only.
Moreover, Fig. 9 (B) shows that our method could localized
the anomalous dynamics even with subtle artifacts. The vi-
sualization results further demonstrate the effectiveness and

generalization ability of our method.

V. CONCLUSION
Most recent video-based DeepFake detection methods have
performed good detection results, however, they cannot yet
achieve satisfactory generalization performance under cross-
dataset scenario. They focus on either the entire face or a
specific local regions, while we argue that both of them should
be integrated comprehensively. In this paper, a novel two-
branch Complementary Dynamic Interaction Network(CDIN)
is proposed. Both the global (i.e. entire face) and local (i.e.
mouth region) dynamics are analyzed simultaneously and
comprehensively. A Cross Dynamic Fusion Module (CCDFM)
is carefully designed to enhance the interation of global and
local information. With CCDFM, the global branch will pay
more attention on anomalous mouth movements and the local
branch will gain more information from the global context.
The experiment results demonstrate that our method achieves
excellent detection performance compared with several SOTA
methods, especially exhibits superior generalization capability
to unseen manipulations.
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